Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения геометрические в теории

Уравнения геометрические в теории упругости 30  [c.395]

Выражения (1.14) и представляют собой статико-геометрическую аналогию. Обратим внимание на то, что вектор, стоящий в правой части второго равенства (1.14), является вектором обобщенных перемещений для вектора сил, стоящего в левой части первого равенства (1.14) и наоборот (см. стрелки). Первое уравнение (1.14) является уравнением равновесия, а второе — геометрическим уравнением, связывающим перемещения узлов системы с деформацией стержней, и аналогом уравнений Коши в теории упругости.  [c.17]


Уравнения геометрически нелинейной теории тонких оболочек служат основой для изучения деформирования, потери устойчивости и закритического поведения гибких тонкостенных конструкций. В отличие от классической линейной теории малых деформаций и перемещений нелинейная теория рассматривает нагружение оболочек, сопровождаемое конечными перемещениями и поворотами материальных элементов.  [c.134]

Система уравнений (5.27) является синтезом статического, геометрического и физического анализов задачи. Уравнения (5.27) отличаются от уравнений Ламе в теории упругости наличием дополнительных членов, расположенных в правой части.  [c.140]

Приведем некоторые упрощенные варианты уравнений геометрически нелинейной теории. Представленные выше соотношения содержат нелинейные члены, включающие углы поворота элемента базовой поверхности, показанного иа рис. 1.11, а также производные этих углов, характеризующие изменение кривизны этого элемента. Как правило, ограничения по жесткости, накладываемые на перемещения несущих элементов конструкций, исключают большие углы поворота и величины Ша. р можно считать малыми по сравнению с единицей. Однако производные этих величин, связанные с местным изгибом поверхности в зонах закрепления или нагружения элемента, могут оказаться значительными и должны быть учтены. Таким образом, упростим приведенные выше нелинейные уравнения, оставив из нелинейных членов только те. которые включают произ  [c.326]

Расчетные зависимости, включаемые в расчетные блоки и модели ЭМП первого класса, выбираются в основном исходя из известных геометрических и тригонометрических закономерностей, связывающих конструктивные данные, и методов теории цепей для установившихся режимов (схемы замещения, векторные диаграммы и т. п.), рассмотренных в 4.1. Эти методы используются для расчета большинства электромагнитных, механических и тепловых характеристик ЭМП в установившихся режимах и приводят в общем случае к совокупности нелинейных алгебраических уравнений, решаемых в определенной последовательности. Если указанные методы оказываются не применимыми к расчету тех или иных характеристик, то для получения аналогичных выражений используются статистические и кибернетические методы ( 4.3, 4.4).  [c.124]

В этом случае строгое решение задачи, основанное на волновой теории, практически не отличается от решения, найденного методом геометрической (лучевой) оптики. Установив, как зависит показатель преломления от свойств среды, т. е. от силовых полей, в которых движется электрон, мы можем рассчитать его движение по правилам геометрической оптики. С другой стороны, можно рассчитать движение электрона по обычным законам механики, зная силы, действующие на электрон. На возможность рассмотрения механической задачи с оптической точки зрения указывалось уже давно. Более 100 лет назад Гамильтон (около 1830 г.) показал, что уравнениям механики можно придать вид, вполне аналогичный уравнениям геометрической оптики. Первые можно представить в виде соотношения, выражающего принцип наименьшего действия (принцип Мопертюи, из которого можно получить уравнения ньютоновой механики), а вторые — в виде соотношения, выражающего принцип наименьшего оптического пути (принцип Ферма, из которого следуют законы геометрической оптики, см. 69). Оба эти принципа имеют вполне тождественное выражение, если подходящим образом ввести понятие показателя преломления. Блестящим результатом современной теории является то обстоятельство, что устанавливаемый ею показатель преломления связан с параметрами, характеризующими силовые поля, в которых движется частица, именно так, как требуется для отождествления принципа  [c.358]


При выводе уравнений (1.5.2) не сделано различия между величиной и положением до и после деформации тех площадок, напряжения на которых рассматриваются. В случае больших деформаций (круг задач геометрически нелинейной теории упругости) необходимо учитывать различие между первоначальной и деформированной формами параллелепипеда. Однако заметим, что по внешнему виду уравнения (1.5.2) сохраняются и в таком случае, если под координатами х, у, г, по которым выполняется дифференцирование в уравнениях (1.5.2), понимать координаты точек не до деформации, а их окончательного положения.  [c.18]

Отыскание деформаций и перемещений связано с рассмотрением физических и геометрических уравнений плоской задачи теории упругости, что в свою очередь приводит к необходимости интегрирования дифференциальных уравнений в частных производных, а это лишает решение того однообразия и четкости, которые свойственны определению напряженного состояния в первой основной задаче.  [c.107]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

В теории пластичности сохраняют силу основные геометрические уравнения теории упругости. Деформированное состояние в точке напряженного тела характеризуется шестью составляющими деформации е , е , Уу , которые связаны  [c.261]

В теории течения статические уравнения (уравнения равновесия) и геометрические уравнения (Коши и Сен-Венана) будут иметь тот же вид, что и в теории упругости или теории малых упруго-пластических деформаций.  [c.293]

Для некоторых материалов распределение напряжений вблизи концов щели существенно связано с эффектами, описываемыми в рамках нелинейной теории упругости ). Используя уравнения геометрически и динамически нелинейной теории упругости, можно получить конечные значения напряжений вблизи конца щели. Даже в рамках линейной теории упругости с ис-  [c.513]

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]


ЭТО построение есть точный эквивалент аналитического процесса, посредством которого в теории дифференциальных уравнений в частных производных первого порядка переходят от какого-либо полного решения к общему . [Оптика в том смысле, в каком мы ее здесь понимали, есть геометрическая оптика, которая имеет дело с понятием светового луча (следовательно, явления дифракции принципиально исключаются) и при применении обычных прямоугольных координат подчиняется дифференциальному уравнению в частных производных первого порядка второй степени  [c.514]

Применение метода В. А. Зиновьева к исследованию механизмов с соприкасающимися рычагами см. [94]. Рассмотренный метод по классификации, приведенной в гл. 22, может быть отнесен к геометрическим методам. Этот метод основан на простом аппарате аналитической геометрии и, в частности, теории замкнутых векторных контуров в трехмерном пространстве, что делает его доступным для широкого практического применения. Вместе с тем векторные уравнения замкнутости в этом методе отображают лишь замкнутые контуры геометрических осей звеньев и их ориентацию в пространстве, не определяя действительных относительных положений соединенных между собой звеньев как пространственных тел. Для полного определения относительных положений реальных звеньев в пространстве необходимо составлять дополнительные уравнения взаимосвязей между параметрами абсолютных движений звеньев. Привязка движений различных звеньев к одной неподвижной системе координат хотя и усложняет уравнения взаимосвязей между звеньями, но дает возможность непосредственного определения параметров абсолютных движений звеньев.  [c.89]

Следует отметить, что использование принципа локального подобия в теории турбулентного переноса, разработанного в трудах ряда исследователей, в том числе В.М. Иевлева [15], позволил распространить на случай течения в пристенном слое витых труб известные полуэмпирические теории турбулентности. Условия применимости этого принципа определяют, основываясь на анализе уравнения баланса энергии турбулентности. Главными членами этого баланса являются члены, описывающие процессы возникновения и подавления турбулентности. При этом характеристики турбулентного переноса в каждой точке определяются только входящими в уравнение баланса энергии турбулентности характеристиками усредненного течения, полями объемных сил и свойствами турбулентности I. Поэтому безразмерные связи (1.54). .. (1.61) можно рассматривать как универсальные локальные законы турбулентного переноса. С ростом масштаба I члены уравнения баланса энергии турбулентности, описывающие генерацию турбулентности, возрастают, а диссипативные члены убывают. Поэтому величина I может быть определена формулой, в которую входят только геометрические параметры потока, например (1.54).  [c.26]

Отличительная черта нового направления в теории подобия (разрабатываемого А. А. Гухманом) заключается в том, что она последовательно развивается как учение о методах построения характерных переменных. В основе такого понимания теории подобия лежит идея, что любой процесс должен рассматриваться в специфических для него переменных. Эти переменные объединяют в себе величины, играющие роль параметров исследуемой задачи (т. е. заданные по условию величины, определяющие размеры системы, ее физические свойства, длительности циклов, начальные и граничные значения переменных), и, следовательно, представляют собой параметры комплексного типа. Множественность факторов, влияющих на процесс, в сильнейшей степени осложняет его исследование, так как представляющие их величины (геометрические, физические и режимные параметры) должны входить в качестве аргументов в уравнения, определяющие искомые величины в функции независимых переменных. Возможность объединения всего множества этих величин в параметры комплексного типа обусловлена тем, что влияние их на развитие процесса проявляется не разрозненно, а в виде эффектов сложной физической природы, являющихся результатом взаимодействия определенных совокупностей различных факторов. Реальный ход процесса определяется относительной интенсивностью этих эффектов. Поэтому целесообразно исследовать процесс в переменных, представляющих собой количественную меру отношения интенсивностей эффектов и построенных в виде комплексов величин, существенных для процесса. Законы построения комплексов определяются непосредственно из рассмотрения основных уравнений задачи, в структуре которых отражен физический механизм процесса.  [c.17]

Такой метод решения прямой задачи теории гидродинамических решеток, если искомые функции рассматриваются непосредственно в области течения, называется методом интегральных уравнений или вихревым методом в связи с гидродинамической интерпретацией этих уравнений. Метод интегральных уравнений применяется в различных видах в зависимости от выбора функции течения, геометрических особенностей решетки и способа решения интегральных уравнений.  [c.49]

Основные закономерности, определяющие связь интенсивности акустического излучения струи с газодинамическими и геометрическими параметрами потока, были установлены М.Дж. Лайтхиллом, который преобразовал уравнение Навье-Стокса к неоднородному волновому уравнению, связывающему изменение плотности в окружающей неподвижной среде с характеристиками турбулентности с струе [1.42]. Анализ этого уравнения на основании теории размерностей позволил получить следующее выражение для звуковой мощности струи  [c.27]

Геометрические зависимости теории оболочек в рамках гипотез Кирхгофа-Лява имеют общий характер. Их последовательное упрощение на базе различных геометрических предположений приводит к уравнению прикладных технических теорий.  [c.134]


Для решения задачи о комбинированном нагружении цилиндрической оболочки, подкрепленной гофром й шарнирно опертой по торцам на упругие кольца жесткостью ЕТ) , воспользуемся полубезмоментной теорией оболочек. Линеаризованные уравнения этой теории можно получить, относя уравнения гл. 9.6 к деформированной поверхности, как это принято в геометрически нелинейных теориях (см. гл. 9.4) [1].  [c.166]

Уравнения равновесия, силовые граничные условия и геометрические соотношения, а также соответствующие им уравнения связи между масштабами в теории малых упругопластических деформаций совпадают с аналогичными уравнениями линейной теории упругости ( 5.1) и в данном разделе не рассматриваются.  [c.91]

В предыдущем разделе были получены критерии статического подобия механических явлений на основе уравнений линейной теории упругости и геометрически линейной теории пластичности в предположении малости удлинений, сдвигов и поворотов элементарного объема деформируемого тела. Эти ограничения обычно используют при расчетах напряженно-деформированного состояния конструкций.  [c.96]

Условия стационарности полного функционала можно разделить на группы в соответствии с двумя раз личными схемами классификации а) по физическому смыслу уравнений — геометрические, статические, физические б) по геометрическому расположению — уравнения в области и граничные условия. Эти группы могут быть разбиты на еще более мелкие подгруппы, если рассмотреть компоненты векторных уравнений. В качестве дополнительных условий могут быть приняты различные комбинации из этих групп и подгрупп (здесь должна быть использована теоретико-множественная операция объединения множеств уравнений). Число таких комбинаций для большинства полных функционалов в теории упругости и оболочек велико. В гл. 3, 4 будут рассмотрены только некоторые, наиболее интересные из них.  [c.39]

В гл. 1 и 2 книги мы будем рассматривать теорию упругости при малых перемещениях (геометрически линейную теорию упругости) и выведем принцип виртуальной работы и связанные с ним вариационные принципы для задачи о статическом равновесии упругого тела, находящегося под действием массовых (объемных) сил, при заданных граничных условиях [1,2 ]. Для описания трехмерного пространства, в котором рассматривается тело, применяются ортогональные декартовы координаты (х, у, z). В геометрически линейной теории упругости компоненты перемещений и, V, W в точке тела считаются столь малыми, что уравнения задачи выполняются в линейном приближении. Запишем эти линеаризованные уравнения  [c.23]

Равенства (5.28.1) представляют собой лишь один из возможных вариантов уравнений состояния. В литературе по теории оболочек можно найти и другие варианты тех же формул. Это объясняется тем, что любая двумерная теория оболочек опирается на те или иные упрош,ающие предположения, характер которых не сказывается на чисто статических и чисто геометрических соотношениях, но отражается на структуре уравнений состояния (выкладки, ведуш,ие к последним, обычно также выполняются не точно).  [c.58]

Легко заметить, что единственные соотношения, связываюш,ие между собой статические и геометрические величины теории оболочек, т. е. уравнения состояния, в настоящем разделе не были использованы. Поэтому можно считать, что статические величины, с одной стороны, и геометрические, — с другой, ничем не связаны друг с другом в равенстве (5.31.6), и записать его так  [c.67]

Этим исчерпываются все чисто статические и чисто геометрические соотношения теории оболочек. Они связываются друг с другом с помощью уравнений состояния, которые вследствие приближенности теории оболочек в известных пределах зависят от нашего произвола. В частности, один из возможных вариантов уравнений состояния записывается так ( 5.28)  [c.74]

Метод асимптотического интегрирования обобш ен также для вывода уравнений динамики пластинок при больших перемещениях (Л. Я. Айнола, 1965, 1966). Результаты показывают, что известные уравнения мембранной теории Кармана, линейной теории изгиба с плоским напряженным состоянием и чисто линейной теории являются при определенных условиях нагрузки асимптотическими приближениями уравнений геометрически нелинейной теории упругости. Указанные выше исследования должны представлять интерес в отношении методики — уравнения движения и граничные условия выводятся из требования, чтобы вариация соответствующего функционала равнялась нулю с требуемой асимптотической точностью.  [c.264]

Схема вывода таких разрешающих уравнений, являющихся аналогом уравнений Ламе в теории упругости, следующая в уравнения равновесия (127), справедливые для оболочки, выполненной из материала с любыми физическими свойствами, вместо усилий-Ых, N2, 5 и моментов Мх, Мг и Я подставляются их выражения через параметры деформации согласно физическим уравнениям (137). В результате такой подстановки получаются три уравнения равновесия оболочки, выполненной из материала, подчиняющегося закону Гука. Далее в полученные уравншия вместо параметров деформации 6, , е , ю, Хг и т подставляются их выражения через перемещения г и ш согласно уравнениям (106)., имеющим чисто геометрический характер. Использование уравнений (106) гарантирует удовлетворение условиям совместности деформаций в срединном слое.  [c.111]

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будбт  [c.281]

В настоящей книге в соответствии с ее названием Приложение методов теории упругости и пластичности к решеник> инженерных задач авторы пытались в небольшом объеме привести основные сведения об исходных уравнениях и соотношениях теорий упругости и прикладной теории пластичности, сосредоточить основное внимание на рассмотрении их физического, геометрического или статического смысла, представить запись отдельных методов решения этих уравнений с помощьк> теории матриц, разобрать отдельные методы решения задач с ориентацией на привлечение быстродействующих цифровых машин и охарактеризовать результаты решения некоторых сложных, но практически интересных задач. Этот краткий курс имеет целью в наиболее доступной форме ознакомить читателя с основными принципами, методами и некоторыми задачами теории упругости и прикладной теории пластичности и подготовить его к самостоятельному изучению полных курсов и специальных исследований в отмеченных областях.  [c.4]

В теории механических колебаний балок из композиционных материалов, а также других конструкций можно выделить два основных направления (они обсуждаются в работах [34, 1 ]) метод эффективных модулей и метод эффективных жесткостей. Согласно первому методу композиционный материал в задачах динамики рассматривается как однородный и ортотроппый (свойства такого условного материала соответствуют исходному материалу), а согласно второму — по упругим постоянным волокон и связующего и геометрическим параметрам находят эффективные жесткости . Эти методы приводят к различным уравнениям движения. и граничным условиям. Значение метода эффективных жесткостей заключается в возможности описывать волновую дисперсию, кроме того, он более эффективен в задачах о распространении волн. Проблема распространения волн в композиционных материалах здесь не обсуждается. Отметим только, что она рассмотрена в работах [40, 6, 16, 82]. В задачах динамики конструкций из композиционных материалов метод эффективных жесткостей получил более широкое распространение. Для балок из слоистых композиционных материалов наиболее эффективна разновидность метода, которая изложена в работе [77] и описана ниже..  [c.138]


Геометрическая нелинейность, вызванная большими нормальным прогибом, была введена в теорию тонких пластин Карманом [175], который рассматривал однородные изотропные пластины и получил в результате связанную систему двух нелинейных дифференциальных уравнений в ч астных производных относительно прогиба W и функции напряжений Эри F.  [c.189]

Если построить относительный кинетический момент К (одинаковый для всех точек пространства), принимая неподвижное начало О за полюс, то вейтор К будет представлять собой абсолютную векторную координату точки АС, а его геометрическая производная — абсолютную скорость той же точки. Если же построить момент К, принимая за полюс центр инерции (представляющий собой начало подвижных осей), то этот момент будет относительной векторной координатой его конца К, aero производная — относительной скоростью точки К. Предыдущее уравнение выражает тогда теорему моментов в относительном движении около центра инерции, выбранного в качестве центра моментов. Эту теорему можно выразить следующим образом  [c.32]

В. Р. Гамильтон родился в Дублине в 1805 г., умер в Дунсинке в 1865 г., был профессором астрономии Дублинском университете и президентом Ирландской академии. Изобрел метод кватернионов, представляю щий собой алгоритм полного и систематического геометрического исчисления. Под влиянием трудов Гамильтона, Грассмана и Бсллавитиса возникло менее полное, но более элементарное понятие о векторах, которое теперь всюду в употреблении. Классическими являются и вклады Гамильтона в геометрическую оптику, в дифференциальную геометрию систем прямых, в теорию уравнений с частными производными и в аналитическую механику, на основе которой он построил теорию распространения света.  [c.240]

Поскольку все же известное истолкование этой микроструктуры, конечно, при дополнительных весьма искусственных предположениях, может быть получено с помощью классической механики (причем имеются значительные практические достижения), то мне кажется особенно знаменательным, что подобное истолкование (я имею в виду квантовую теорию в форме, предложенной Зоммерфельдом, Шварцшильдом, Эпштейном и некоторыми другими) находится в теснейшей связи с уравнением Гамильтона и теорией Гамильтона—Якоби, т. е. с той формой классической механики, которая уже содержит отчетливое указание на истинный волновой характер движения. Уравнение Гамильтона соответствует как раз принципу Гюйгенса (в его старой наивной, а не в строгой, приданной ему 1 рхгофом форме). И подобно тому, как последний принцип, дополненный совершенно непонятными с точки зрения геометрической оптики правилами (правило зон Френеля) уже в значительной мере разъясняет явления дифракции, можно в некоторой мере уяснить, исходя из теории функции действия, происходящие в атоме процессы. Напротив, можно запутаться в неразрешимых противоречиях, если пытаться, как это кажется естественным, полностью удержать и для атомных процессов понятие траектории системы подобно этому бессмысленно, как известно, подробно изучать в области дифракционных явлений движение светового луча.  [c.690]

Статико-геометрическая аналогия, установленная впервые А. Л. Гольденвейзером, широко используется в теории оболочек. В частности, с ее помощью можно выразить общее решение однородных уравнений равновесия через три вспомогательные функции.  [c.256]

Уравнение (1) аналогично уравнению для температуры в пластине с теплоотдачей по поверхности. Аналогичны также и граничные условия для упомянутых вибрационной и тепловой задач. Таким образом, имеет место математическая аналогия между диффузным вибрационным и тепловым полями в геометрически подобных структурах. Эта аналогия делает возможным при решении задач по исследованию вибрационного поля использовать методы, а в ряде случаев и готовые решения, разработанные в теории теплопроводности. Нетрудно видеть, что коэффициент вибропроводимости 1 аналогичен коэффициенту теплопроводности, а коэффициент вибропоглощения б — коэффициенту теплоотдачи пластины в окружающую среду.  [c.14]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

Блок-схема алгоритма шагово-итерационного расчета геометрически и физически нелинейных тонкостенных подкрепленных конструкций (рис. 7.21 построена на основе уравнений, приведенных в 3.2. Физическая нелинейносп. учитывается в рамках теории течения с использованием уравнений состояния описанных в 2.4 для различных типов материалов. Алгоритм предусмагривас i возможность нагружения конструкции с переменным шагом по нагрузке, а также возможность энергетической коррекции решения на каждой итерации равновесия для ускорения сходимости итерационного процесса.  [c.146]

В третьем разделе разработанные теоретические основы моделирования идеализированной гидравлической машины с помощью использования метода электрогидравлической аналогии и основных понятий единой теории цепей. С этой целью для ИЦН с заданными геометрическими размерами при постоянной частоте обращения колеса п = onst) было полученное модифицированное уравнение Ейлера в виде баланса давлений  [c.8]

Рассмотрим основные уравнения установившейся ползучести. Уравнения теории напряжений и теории деформации остаются теми же, что и в теории упругости и пластичности. Это дифференциальные уравнения равновесия (4, Г), условия на поверхности (4.2), геометрические соотношения Хоши (4.С) и уравнения неразрывности 4.4).  [c.253]

В 1934 г. Доннелл [7.23] обратил внимание на важность учета нелинейных членов в геометрических соотношениях. Основы геометрически нелинейной теории были заложены работой Маргерра [3.10] (1938), хотя идейные вопросы этой теории были обсуждены еше раньше в работах Навье (1833), С. П. Тимошенко (1925) и Бицено (1935) [5.1] по прощелкиванию стержней и сферического купола. Позднее Карман и Цзян [7.35]. на основе уравнений Маргерра установили, что в закри-тической стадии нагрузка с ростом деформации падает. Такой результат был весьма неожиданным и противоречил известным фактам, полученным о решениях аналогичных задач для стержней и пластин, где нагрузка с ростом деформации непрерывно возрастала.  [c.9]

Условия стационарности функционала Ху — Ва-шицу имеют классическую, наиболее употребительную в теории упругости форму геометрические соотношения (1.1), статические уравнения (1.6) и физические уравнения (1.2) в объеме V геометрические (1.5) и статические (1.4) граничные условия на повер.х-ности S.  [c.65]


Смотреть страницы где упоминается термин Уравнения геометрические в теории : [c.270]    [c.146]    [c.214]    [c.118]    [c.141]   
Основы теории упругости и пластичности (1990) -- [ c.0 ]



ПОИСК



Обобщенная постановка краевых задач теории геометрически пологих оболочек в усилиях. Сведение к операторным уравнениям. Физическое содержание обобщенных решений

Теории Уравнения

Теория геометрическая

Уравнения безмоментной теории геометрические

Уравнения геометрические

Уравнения геометрические в теории упругости

Уравнения геометрические в теории форма

Уравнения моментиой теории оболочек геометрические

Уравнения моментиой теории оболочек геометрические закона Гука

Уравнения моментиой теории оболочек геометрические расчетные

Уравнения моментиой теории оболочек геометрические элемента оболочки



© 2025 Mash-xxl.info Реклама на сайте