ПОИСК Статьи Чертежи Таблицы В этом случае строгое решение задачи, основанное на волновой теории, практически не отличается от решения, найденного методом геометрической (лучевой) оптики. Установив, как зависит показатель преломления от свойств среды, т. е. от силовых полей, в которых движется электрон, мы можем рассчитать его движение по правилам геометрической оптики. С другой стороны, можно рассчитать движение электрона по обычным законам механики, зная силы, действующие на электрон. На возможность рассмотрения механической задачи с оптической точки зрения указывалось уже давно. Более 100 лет назад Гамильтон (около 1830 г.) показал, что уравнениям механики можно придать вид, вполне аналогичный уравнениям геометрической оптики. Первые можно представить в виде соотношения, выражающего принцип наименьшего действия (принцип Мопертюи, из которого можно получить уравнения ньютоновой механики), а вторые — в виде соотношения, выражающего принцип наименьшего оптического пути (принцип Ферма, из которого следуют законы геометрической оптики, см. § 69). Оба эти принципа имеют вполне тождественное выражение, если подходящим образом ввести понятие показателя преломления. Блестящим результатом современной теории является то обстоятельство, что устанавливаемый ею показатель преломления связан с параметрами, характеризующими силовые поля, в которых движется частица, именно так, как требуется для отождествления принципа [Выходные данные]