Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические механизмы

Как следует из вышеизложенного, анализ зарождения и развития разрушения в элементе конструкции в значительной степени зависит от универсальности тех или иных локальных критериев разрушения. При формулировке критериев эмпирическим путем — только на основе непосредственных механических испытаний — возникает опасность неадекватной оценки разрушения конструкции при нагружении, отличном от нагружения при проведенных экспериментах. Повысить степень универсальности локальных критериев можно, опираясь на физические механизмы, протекающие на микроуровне. Одним из путей решения данного вопроса является создание физико-механических моделей разрушения материала, на основании которых могут быть даны формулировки локальных критериев разрушения в терминах механики сплошной среды на базе физических и структурных процессов деформирования и повреждения материала.  [c.9]


Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]

Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]

При конденсации пара на поверхности микропленки теплота конденсации теплопроводностью через микропленку передается проницаемой матрице, а затем также теплопроводностью через каркас — стенкам канала. Вследствие чрезвычайно развитой поверхности раздела фаз пар — жидкость внутри пористой структуры и малой толщины микропленки, особенно в начале области конденсации, объемная интенсивность передачи теплоты от пара к пористому материалу очень велика. Интересно отметить, что процессы конденсации потока пара и испарения потока теплоносителя внутри каналов с проницаемым заполнителем имеют одинаковый физический механизм и отличаются только направлением.  [c.121]

При анализе повреждения материала вблизи края трещины возникает неопределенность в связи с тем, что для некоторой области, близко примыкающей к краю трещины, нельзя математически описать физический механизм повреждения. Для того, чтобы избежать этой неопределенности, Г.К. Си отделяет указанную область цилиндром с радиусом Го, названным радиусом ядра трещины (рисунок 4.22).  [c.282]


Трудно поэтому переоценить историческую заслугу Ньютона, положившего в основу своей механики количественные законы сил, независимо от того, ясна ли их природа. Основные стороны такой, не претендующей на глубокое понимание физического механизма явления, модели силы изложены в его классическом труде Математические начала натуральной философии (русский перевод А. Н. Крылова в издании Морской академии, относящийся к 1915 г.).  [c.12]

На рис. 8.1, а показаны квантовые переходы центра люминесценции, отвечающие наиболее простому физическому механизму люминесценции. При возбуждении центр переходит с уровня 1 на уровень 2, а при обратном переходе рождается фотон (возникает люминесцентное свечение). Частота излучения люминесценции соответствует разности энергий возбуждения и основного уровня со = ( . 2—  [c.187]

Рассматривая в 8.1 различные физические механизмы люминесценции, мы отмечали, в частности, резонансную флуоресценцию (см. рис. 8.1, а). Для возбуждения резонансной флуоресценции атомов данного типа естественно использовать излучение, испускаемое такими же атомами. Американский физик Р. Вуд открыл в 1904 г. резонансную флуоресценцию, облучая пары натрия светом от натриевого источника, соответствующим желтой линии натрия он обнаружил, что пары начинают светиться, испуская излучение той же частоты.  [c.202]

Надо сказать, что термокинетические колебания обусловлены конкретным физическим механизмом, указанным выше, а не процедурой вычислений, так как при изменении шага сетки но пространству и варьировании точности счета но времени картина полей температуры в качественном отклонении не изменяется.  [c.411]

Металлы и сплавы технической чистоты, как правило, имеют более сложные зависимости пластичности от температуры и скорости деформации. Несколько конспективное изложение материала, относящегося к этому разделу, связано с тем, что пластичность и сопротивление деформации в известной степени взаимосвязаны, поэтому, чтобы избежать повторений, дается краткий обзор, но относящейся только к пластичности. Физические механизмы при этом одинаковы, поэтому данный раздел необходимо рассматривать в совокупности с влиянием температурно-скоростных условий деформирования на сопротивление деформации.  [c.511]

Проиллюстрируем физический механизм возникновения неустойчивости при расчете по явной схеме на примере плоской стенки без источников теплоты. Положим, что начальная температура стенки равна нулю во всех точках пространственной сетки, кроме одной точки с номером п k (рис. 3.4) Un =- О, п = I,. .. N, пфк, и% 1.  [c.82]

Согласно структурно-энергетической теории фундаментальная закономерность трения и износа проявляется благодаря главному физическому механизму - явлению структурно-энергетической приспосабливаемости материалов при механических и термомеханических процессах. Теория базируется на экспериментальном факте для всех материалов и рабочих сред существуют диапазоны нагрузок и скоростей перемещения, в которых показатели трения и износа устойчивы, на несколько порядков ниже, чем вне этих диапазонов, и которые определяются критическими значениями энергии активирования и пассивации, соответствующими условиями образования защитных упорядоченных диссипативных структур, обладающих свойством минимального производства энтропии.  [c.107]

Модель упругого тела для малых деформаций по Гуку и развиваемые ниже математические приближенные постановки задач неприемлемы для описания действительных явлений непосредственно вблизи концов трещин в хрупких телах. Тем не менее для упругих задач для тела в целом достаточно только установить правильно величину концентрированного оттока энергии аАа , который в рамках более детальных моделей и в более точной математической трактовке может быть обусловлен различными физическими механизмами.  [c.538]

Поглощение определяет затухание акустических волн в аморфных телах, а также в монокристаллах. В зависимости от того, какой физический механизм потерь в данном твердом теле имеет превалирующее значение, коэф-  [c.192]

Влияние циркуляции расплава на тепломассообмен и на геометрию ванны. Гидродинамическая обстановка в ванне, создаваемая электромагнитной циркуляцией, может определяющим образом влиять на технологический процесс. Влияние ее столь же многообразно, как и сами процессы, причем возможны как положительные, так и отрицательные воздействия. В данном разделе рассматриваются лишь основные физические механизмы этих воздействий.  [c.52]


В области действия идентичных физических механизмов пластической деформации можно решать обратную задачу — опре-  [c.96]

По мнению Б. И. Костецкого и сотрудников [34], особенности физического механизма структурной приспособляемости состоят в том, что работа трения посредством упругопластической деформации вызывает первичное изменение структуры поверхностного слоя и выделение теплоты. К особенностям пластической деформации они относят локализацию в тончайших поверхностных слоях диспергирование и ориентацию относительно направления перемещ,е-ния исключительно высокую плотность энергии, запасенной в поверхностном слое одновременную структурную и термическую активацию поверхностного слоя.  [c.12]

Выше под и понималась неопределенная величина или запасенная энергия системы, или изменение этой энергии. Эта неопределенность вынужденная, поскольку не всегда очевидно, с какой формой энергии мы имеем дело. Это может быть изменение температуры системы, изменение ее химического состава либо фазового состояния, например затвердевание жидкости, и т. п. Прямое определение MJ является довольно сложной задачей в каждой конкретной системе оно зависит от физического механизма протекающих процессов. Однако известно, что (3.9) во всех случаях остается справедливым и что в адиабатическом процессе оно принимает вид (3.15). В дальнейшем будем называть U внутренней энергией системы.  [c.50]

Теплопроводность и радиация — два чисто физических механизма теплопередачи. Третий вид — конвекция. Если флюид (жидкость или газ) перемещается вдоль нагретой поверхности, теплота может быть передана флюиду за счет либо теплопроводности, либо теплового излучения, либо того и другого вместе и флюид перенесет ее в область с более низкой температурой. В результате образуется тепловой поток, который способствует усилению потока, вызванного одной лишь теплопроводностью или радиацией. Конвекция — гидродинамический процесс, который зависит от геометрии поверхностей, а также от характеристик флюида и от источника теплоты. Поэтому задачи, относящиеся к конвекции, труднее решать аналитически, чем задачи, относящиеся к теплопроводности или радиации. По сути дела, их почти никогда и не решают иным способом, кроме вывода эмпирического соотношения, полученного по результатам натурных исследований.  [c.213]

Другой физический механизм, посредством которого атмосфера и ее компоненты отбирают энергию из приходящего потока солнечного излучения, — это рассеяние. Оно также име-  [c.291]

Универсальность полученных закономерностей позволяет заключить, что процесс разрушения твердого тела всегда имеет кинетический характер (т. е. протекает во времени) и природа его для всех тел одинакова. Физический механизм этого процесса представляется в настоящее время следующим образом.  [c.58]

Интерес к исследованию электронных процессов в тонких пленках связан также с возможностью создания на их основе активных пленочных элементов и ИС. Принцип работы таких элементов определяется тем, какой физический механизм переноса носителей заряда положен в их основу. Краткому рассмотрению этих механизмов и посвящена данная глава.  [c.271]

В настоящее время определяющих уравнений состояния, позволяющих описать реологическое поведение материалов с учетом режима нагружения, нет, поэтому для выполнения расчетов используются упрощенные модели материала [153, 225, 323], неотражающие всей сложности поведения материала в процессе-деформации и, следовательно, применимые для ограниченного диапазона условий нагружения. Успехи в построении уравнений состояния на основе физических механизмов пластической деформации, например на основе дислокационной модели пластического течения [74, 175, 309], имеют ограниченное значение. Зависимость сопротивления деформации от мгновенных условий нагружения (температура, скорость деформации и др.) и всей истории предшествующего нагружения, которая определяет изменение в процессе деформирования большого числа параметров, характеризующих микро- и макроструктуру материала, за исключением некоторых частных случаев, не позволяет в настоящее время дать количественную оценку инженерных характеристик сопротивления материала.  [c.15]

В предыдущем параграфе установлено, что в общем случае поведения материала под нагрузкой его сопротивление деформации является функционалом пути нагружения и может быть представлено зависимостью от деформации и ее производных по времени. При этом не учитывались конкретные физические механизмы деформации и параметры микро- и макроструктуры материала.  [c.23]

Однако такие феноменологические модели малопригодны для экстраполяции результатов относительно кратковременных лабораторных опытов на реальные длительные сроки эксплуатации, а также для описания разрушения в условиях ОНС при сложных программах нагружения. В этой связи многие исследователи обращаются к анализу физических механизмов и моделей накопления повреждений при разрушениях, зависящих от времени. Выполненный во многих работах [240, 256, 306, 318, 324, 342, 392, 433] металлографический и фрактографиче-ский анализ показал, что снижение долговечности при уменьшении скорости деформирования при различных схемах нагру-  [c.152]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]


Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]

Физический механизм энергоразделения формулируется в рамках модели микрохолодильных циклов (116, 140, 155], согласно которой некоторые турбулентные частицы газа (турбулентные моли [153]), сохраняя в течение определенного промежутка времени т свою индивидуальность, претерпевают радиальные турбулентные смешения, при этом соответственно адиабатно сжимаясь или расширяясь (в зависимости от направления движения) в поле высокого радиального градиента давления и таким образом передают тепло из приосевой зоны низкого давления в периферийную область более высокого давления (рис. Ъ.П,а,б).  [c.122]

Таким образом, можно сделать вывод о том, что для внесения ясности в понимание физического механизма энергоразделения в вихревых трубах необходимо провести дополнительные исследования по изучению влияния мелкомасштабной турбулентности, а также влияния КВС и прецессии вихревого ядра на вихревой эффект. В теоретическом плане необходимо провести предварительные оценки возможности энергоразяеления вследствие взаимодействия когерентных вихревых структур, проанализировать уравнения закрученного потока в представлении вихревой, акустической и турбулентной структур возмущений, а также построить физико-математическую модель процесса энергоразделения на базе детального рассмотрения микроструктуры потока в вихревых трубах.  [c.128]

Интенсивность внутрнпорового теплообмена. Одной из основных величин, определяющих испарение потока теплоносителя внутри пористых металлов, является интенсивность Ау объемного теплообмена. Выполним приближенную оценку этой величины. Из приведенного ранее физического механизма процесса следует, что основным режимом внутрнпорового теплообмена при движении двухфазного потока в нагреваемых матрицах является передача теплоты от пористого каркаса с температурой Т теплопроводностью через жидкостную микропленку к ее поверхности, имеющей температуру, равную температуре насыщения, где теплота затрачивается на испарение жидкости.  [c.85]

Аналогично рассчитывается массовое паросодержание потока и при конденсации пара внутри охлаждаемого канала с пористым заполнителем. После этого вследствие полной обратимости физического механизма процессов испарения и конденсации потоков внутри канала с проницаемой матрицей расчет изменения давления вдоль конденсирующегося потока может быть произведен с помощью соотношений, приведенных в разд. 4.3. Необходимо учесть только обратное изменение массового па-росодержания вдоль канала.  [c.123]

Так, Планк предполагал, что излучение только испускается порциями. Он связывал это с особенностями механизма испускания излучения атомами и молекулами вещества. Само же излучение существовало, как полагал Планк, не в виде квантов, а в виде непрерывной сущности , в виде непрерывных электромагнитных волн в пространстве. Однако такие представления казались не вполне состоятельными, так как в этом случае непрерывная световая энергия должна была бы где-то ждать возможности порциоиного поглощения атомами вещества иначе говоря, непрерывная энергия должна была бы каким-то образом разбиваться на кванты перед поглощением (такое возражение выдвигал Пуанкаре). Под влиянием подобной критики Планк выдвинул так называемую гибридную гипотезу, согласно которой излучение испускается квантами, а поглощается непрерывно. Однако допущение столь разных физических механизмов испускания и поглощения излучения не могло не казаться довольно странным. Напрашивался единственный выход признать, что само излучение не непрерывно, а состоит из отдельных порций (квантов), Сделать такой вывод Планк все же не решился. Это сделал Эйнштейн.  [c.46]

Богатый экспериментальный материал по атомным спектрам, накопленный к началу XX в., не имел теоретического обоснования. Почему спектры атомов линейчатые Чем объясняются наблюдаемые закономерности в структуре серий спектральных линий Как устроен атом и как связаны с его строением закономерности в спектре На все эти вопросы в то время ответа не было. Не был известен физический механизм испускания света атомом. Было неясно, в частности, что же именно испускает отдельный атом сразу все линии в спектре данного элемента или только одну линию из спектра. Первой точки зрения придерживался, например, Кайзер. Вторая была высказана в 1907 г. Конвеем, который полагал,  [c.61]

ЛЮМИНЕСЦЕНЦИЯ 8.1. Виды и физические механизмы люминесценции 182 8.2. Основные характеристики люминесценции 191 8.3. Применения люминесценции 197 8.4. От резонансной флуоресценции к эффекту Мёссбауэра 202  [c.127]

Электр он-фопонное взаимодействие. Рассматривая порознь тепловые колебания кристаллической решетки и движения обобществленных кристаллом электронов, удается корректно описать энергетические состояния твердого тела. Однако при этом из рассмотрения выпадают ряд важных эффектов, обусловленных взаимодействием электронов и фоноиов. Это взаимодействие проявляется в поглощении или испускании электроном 4юнона (поглощение приводит, в частности, к затуханию в кристаллах звуковых волн) в рассеянии электрона на фононе, что следует рассматривать как один из основных физических механизмов возникновения электрического сопротивления в кристалле в обмене фононами, происходящем между парой электронов, что приводит к взаимному притяжению электронов и обусловливает эффект сверхпроводимости.  [c.149]

Экспериментальные исследования упрочнения сталей взры пом. Для исследования физических механизмов и причин упрочнения металлов ударно-волновой обработкой в работе S. S. Grigorian, К. I. Kozorezov, R. I. Nigmatulin et al (1972) была использована методика достаточно чистого и контролируемого эксперимента, связанного с созданием плоской ударной волны за счет плоского удара пластиной, разогнанной до некоторой скорости (которая непосредственно замерялась) с помощью взрывчатого вещества (ВВ). Схема такого эксперимента показана на рис. 3.5.1. От одного капсюля генератор линейной (7) и плоской  [c.283]

Физический механизм трения в резиновых подшипниках при водяной смазке еще недостаточно изучен. Можно предполагать, что трение носит в основном жидкостный характер. Выступающие поверхности вкладыша, касаясь вала, несут незначительнук нагрузку, основная часть которой воспринимается водой, заполняющей поверхность сложного рельефа. Вал, увлекая часть этой воды, заставляет ее перетекать через выступающие барьеры, которые, таким образом, лишь периодически находятся в соприкасании с валом. В таких условиях, пока не будет достигнуто критическое давление, толщина водяной пленки остается достаточно большой трение в этом случае удовлетворительно описывается гидродинамической теорией.  [c.211]

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперснокольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.  [c.231]


Пьезоэлектрический эффект был открыт при исследовании кристаллических материалов типа кварца, и первоначально в технике применяли кристаллические пьезопреобразователи. В на-стояш,ее время открыты различные классы пьезоматериалов, отличающиеся физическим механизмом возникновения пьезоэффекта. Согласно этой классификации кварц относят к неполярным пьезодиэлектрикам.  [c.61]

Общепризнано, что разрушение композита обусловлено локальными физическими процессами следовательно, для обоснования критериев разрушения при механистическом подходе необходимо, во-первых, охарактеризовать локальные нерегулярности взаимного расположения матрицы и волокон, во-вторых, разработать во всех деталях методику исследования вне рамок классической механики сплошной среды и, в-третьпх, изучить физические механизмы разрушения каждой из изотропных фаз  [c.402]

Для выяснения физических механизмов, определяющих процессы пласзнческой деформации в отдельном цикле усталостного нагру-нгопия металлов, необходимо изучить активационные параметры движения дислокаций. В настоящей работе приведены новые экспериментальные результаты, полученные из опытов релаксации  [c.129]


Смотреть страницы где упоминается термин Физические механизмы : [c.148]    [c.227]    [c.182]    [c.184]    [c.213]    [c.17]    [c.65]    [c.183]    [c.316]    [c.184]   
Смотреть главы в:

Трение износ и смазка Трибология и триботехника  -> Физические механизмы



ПОИСК



Вибрационное внедрение физические механизмы

Г лава , Система механизмов Структура механизмов. Классификация механизмов по физическим свойствам звеньев и способу их сочетаний

Гавриленко О физическом смысле сил, приложенных к механизму

КОНДУКТИВНО-КОНВЕКТИВНЫИ ТЕПЛООБМЕН ПСЕВДООЖИЖЕННОГО СЛОЯ КРУПНЫХ ЧАСТИЦ С ПОВЕРХНОСТЬЮ ПОД ДАВЛЕНИЕМ Физические представления о механизме теплообмена псевдоожиженного слоя с поверхностью

Механизм и физические основы процесса шлакования — Изучение механизма процесса шлакования в лабораторных условиях

ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ Физические представления о механизме переноса

Усталость, механизм разрушения Физический предел упругости

Физическая интерпретация сопоставление со свойствами монокристалла доменный механизм

Физические механизмы и основные виды асимметрии системы, обусловливающие вибрационное перемещение

Физический механизм дисперсии в жидкости

Физический механизм молекулярного поглощения. Время релаксации

Физический механизм неустойчивости

Физический механизм теплопроводности

Физический механизм электроимпульсной обработки



© 2025 Mash-xxl.info Реклама на сайте