Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод решения краевых задач для линейных систем

МЕТОД РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ЛИНЕЙНЫХ СИСТЕМ  [c.22]

Годунов С. К. О численном методе решения краевых задач для систем линейных обыкновенных дифференциальных уравнений.— Успехи мат. наук, 1961, т. 26, № 23.  [c.280]

Уравнения (7.38) представляют собой систему линейных алгебраических уравнений относительно искомых функций в узлах [Фь Ф2,..., Фр]. Таким образом, в методе конечных элементов решение краевой задачи для уравнения в частных производных сводится к решению линейной системы алгебраических уравнений.  [c.203]


Применение дискретно-континуальной расчетной схемы для тонкостенных оболочечных конструкций определяет основной метод решения задач статики и динамики тонкостенных осесимметричных и призматических конструкций. При численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений применяют метод ортогональной прогонки Годунова [6].  [c.143]

Вначале рассмотрены основные методы численного анализа интерполирование, численное интегрирование и дифференцирование. решение линейных и нелинейных уравнений и систем, решение начальных и краевых задач для обыкновенных дифференциальных уравнений. Эти сведения позволят изучать материал последующих глав, не обращаясь к дополнительной литературе.  [c.3]

Использование метода Бубнова—Власова для Сведения двумерных линейных краевых задач относительно приращений неизвестных к одномерным позволило свести определение приращений к краевым задачам для систем обыкновенных дифференциальных уравнений с переменными коэффициентами. В работах [281, 287, 36] решение получено путем усреднения зтих коэффициентов. Точность такого приема была оценена численно на основе сравнения с решением методом типа прогонки [13]. Различные варианты метода прогонки использовались в работах [13, 8, 222, 11 183, 12]. Прогонка осуществлялась методом начальных параметров с использованием метода Рунге—Кутта. Вопр Ьсы сходимости метода последовательных нагружений в сочетании с методом Бубнова—Власова для сведения двумерных линейных пошаговых задач к одномерным обсуждались в работах [222,10,7,263,223].  [c.185]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]


Авторы работ [146, 236, 240, 254, 265] предлагают решение контактной задачи без использования каких-либо аналогий и стыковочных элементов. В отличие от предыдущего подхода, где контактные элементы объединяют взаимодействующие тела в одну систему, для работ данного направления характерно раздельное рассмотрение контактирующих тел. При этом общая система пополняется определенным количеством уравнений совместности, кратным числу контактирующих узлов. Для решения задачи обычно применяется пошаговый процесс нагружения [240, 244] с уточнением граничных условий на каждом шаге итерационным методом. Приращения нагрузки выбираются достаточно малыми [146] для сохранения линейной связи между перемещениями и деформациями в пределах каждого шага по нагрузке. Такой подход требует многократного решения краевой задачи, а также построения сложных итерационных алгоритмов корректировки граничных условий.  [c.12]

В книге представлены результаты исследований автора по управлению упругими колебаниями систем, описываемых одномерным волновым уравнением с линейными граничными условиями различных родов. Подробно рассматриваются практические способы построения граничных управлений на основе решений, получаемых методом Даламбера и на основе метода Фурье. Определяются обобщенные решения класса Ь2 различных типов краевых задач. Для них с помощью априорных оценок доказаны теоремы существования и получен явный вид этих решений.  [c.1]

В случае системы двух линейных уравнений с частными производными первого порядка с постоянными коэффициентами для двух независимых функций щ и 2 эту систему можно свести к одному дифференциальному уравнению второго порядка с постоянными коэффициентами для функции щ или 2. Тогда решения краевых задач можно определить в аналитическом виде 24, 62]. В этом случае можно также использовать интегральное преобразование Лапласа (см., например, п. 15). Этот метод, однако, непригоден в некоторых случаях, именно тогда, когда вместе с решением данной системы уравнений необходимо определить границу области, в которой ищется решение, например при определении волны разгрузки для упругопластической среды (с кусочно линейной характеристикой материала).  [c.68]

Изложенные выше вопросы теории и практического применения одномерного варианта МГЭ показывают его эффективность и преимущества перед МКЭ, МКР, методами сил, перемещений, смешанным методом, методом начальных параметров и другими методами. Не попавшие в наше поле зрения другие задачи механики линейных систем (соответственно и линейные задачи электротехники, теплотехники, гидравлики, физики и т.д.) также могут решаться предложенным алгоритмом. Для этого любую задачу необходимо представить в форме решения задачи Коши (1.32) и далее применять алгоритма краевой задачи (1.38) - алгоритм одномерного варианта МГЭ.  [c.184]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]


Применяя неявные схемы, мы получаем для определения значений искомой сеточной функции на верхнем временном слое систему алгебраических уравнений. Если схема линейная, то эта система также линейная и для ее решения можно использовать стандартные вычислительные методы линейной алгебры. Однако число арифметических действий, необходимое для решения линейной алгебраической системы общего вида, имеющей порядок N, быстро возрастает с увеличением N (пропорционально Л ). Для одномерных сеточных краевых задач число N мо-  [c.92]

Имеется большое количество разнообразных численных методов решения уравнений типа (9.2) [6, 13 и др.], из которых для реализации на ЭЦВМ наиболее удобен метод Рунге—Кутта. Отметим, что для распространенных ЭЦВМ обычно имеются стандартные программы решения систем линейных обыкновенных дифференциальных уравнений, к которым уравнение (9.2) приводится обычным приемом [90]. Однако предварительно рассматриваемую краевую задачу необходимо свести к задаче с начальными условиями (задаче Коши). Этот во-  [c.66]

Разрешающая система уравнений для конструкции, состоящей из Л/оболочек, составляется из Л/систем(II. 19). К граничным условиям на торцах конструкции присоединяется N — 1 условие сопряжения оболочек (11.23). Сформулированная нелинейная краевая задача может быть сведена к системе нелинейных алгебраических или трансцендентных уравнений и к задаче Коши для начального вектора. Однако в силу жесткости задачи Коши подобный алгоритм решения нелинейных задач неустойчив. Более эффективно применение итерационного процесса, на каждом шаге которого решается линейная краевая задача в сочетании с устойчивым численным методом прогонки [30, 90, 134, 1861. В практике решения  [c.36]

Наиболее эффективные из этих методов сводят решение соответствующих краевых задач к решению систем линейных алгебраических уравнений. Поэтому ознакомление с основами аппарата линейной алгебры является необходимым для успешного изучения методов математического модели рования.  [c.16]

Рассмотренные методы решения обыкновенных дифференциальных уравнений, блоки аппроксимации линейных и нелинейных функциональных и временных зависимостей составляют стандартное математическое и техническое обеспечение АВМ. К специальному математическому и техническому обеспечению аналоговых вычислительных машин относятся методы и устройства моделирования краевых задач, линейных и нелинейных алгебраических уравнений, задач расчета производных и функций чувствительности, дискретных, нестационарных и стохастических систем, уравнений в частных производных, задач оптимизации и геометрических задач. Специальное математическое и техническое обеспечение требуется при встраивании АВМ в экспериментальные установки и испытательные стенды для имитации реальных процессов, регистрации и обработки результатов испытания. Предметом специального рассмотрения может служить теория и практика аналого-цифровых вычислительных комплексов. Некоторые составляющие специального математического и технического обеспечения АВМ изложены ниже.  [c.92]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]

Метод Шварца [34, 63, 65] является эффективным методом решения краевых задач для линейных дифференциальных уравнений в частных производных. Этот метод называется также альтернирующим ). Метод Шварца первоначально был разработан для решения задачи Дирихле для двумерного уравнения Лапласа, но может быть применен и к решению краевых задач для других дифференциальных уравнений и систем, в частности, к решению плоских статических задач линейной теории упругости. Этот метод позволяет найти решение краевой задачи для некоторой области, если эта область представляет собой пересечение или объединение нескольких областей, для каждой из которых эта краевая задача может быть сравнительно просто решена.  [c.231]


Запись уравнений в форме (5.237) позволяет сформулировать метод последовательных приближений для их реигения, известный под названием метода упругих решений. В нулевом приближении правую часть (5.237) полагают тождественно равной нулю, при это.м получается краевая задача линейной теории упругости. В перво.м и последующих приближениях правая часть вычисляется по результатам предыдущего приближения таким образом, на каждом uiare приходится рен/ать одну и ту же систему уравнений с различными правыми частями. Условия (5.235) обеспечивают сходимость метода последовательных приближений к решению (вообще говоря, обобщенному) краевой задачи для уравнений  [c.271]

Систему трех обыкновенных линейных дифференциальных уравнений (7.5) можно решить на ЭВМ с помощью численных методов. Для решения задачи реализуем стандартную подпрограмму DLBVP [184], которая сводит решение краевой задачи к решению задачи Коши, где модифицированным предиктор-корректор методом Хэмминга четвертого порядка решают дополнительные задачи Коши и определяют перемещения Uz, 0, Ч " завершающей задачи Коши. Интеграл вычисляется по интегральной формуле Эрмита четвертого порядка. Выбираем начальный шаг интегрирования Ды=0,01 м и задаемся допустимой погрешностью вычислений е=МО-  [c.204]

Особо следует отметить работу 3. С. Аграновича, В. А. Марченко, В. П. Шестопалова [89], в которой по существу определены основные направления в решении проблем резонансного рассеяния волн периодическими дифракционными решетками. К моменту ее появления было ясно, что основным средством электродинамического анализа в резонансной области частот должен стать численный эксперимент. Необходимо только так переформулировать исходную краевую задачу для дифференциального уравнения в частных производных, чтобы можно было эффективно использовать вычислительную технику с прогнозируемой погрешностью и в реальном масштабе времени получать необходимые результаты. В [891 реализована схема, отработанная в рамках классического функционального анализа. Путем выделения и обраш,ения (метод полуобраш,ения, левая регуляризация) статической части задача сведена к канонической фредголь-мовой. На этом формально ее решение можно считать законченным, так как для операторных уравнений фредгольмового типа из единственности следует существование решения, а свойства компактности обеспечивают сходимость вычислительных процедур, основанных на редукции бесконечных систем линейных алгебраических уравнений [90].  [c.8]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Потребности вычислительной практики при решении двумерных задач математической физики, в частности, задач газовой динамики и теории упругости в сложных областях, требуют автоматизации расчета криволинейных разностных сеток. К таким сеткам в ряде случаев предъявляются специальные требования. Обычно желательно, чтобы расстояния между соседними узлами сетки несильно отличались между собой и углы в элементарной четырехугольной ячейке невырождались (т.е. не были близки к О и тг). Первое требование связано с точностью аппроксимации производных, входящих в соответствующие диффе ренциальные уравнения, и также как и второе, — с обусловленностью систем разностных уравнений, полученных после аппроксимации. В частности, для метода конечных элемен-тов применительно к задачам упругости [1] в оценку для числа обусловленности матрицы соответствующей системы линейных уравнений в знаменатель входит sin а, где а — минимальный угол между сторонами элементарной ячейки сетки. Кроме того, в ряде слу-чаев в зависимости от особенностей краевых условий на части границ области требуется иногда сгущать узлы. Последнее третье требование в сочетании с двумя первыми создает  [c.494]

Аналогия между статическими и геометрическими соотношениями теории оболочек привела В. В. Новожилова (1946) к установлению уравнения в комплексной форме, где неизвестными являются комплексные перемещения. Этот способ применим только для линейных задач равновесия но при их решении он имеет явные достоинства. Уже в первой стадии разработки соответствующей теории были определены несущественные члены в разрешающих уравнениях. Введение комплексных функций позволило понизить вдвое порядок дифференциальных уравнений, что сделало систему уравнений более обозримой. Это имеет большое значение при решении задач с переменными коэффициентами. Например, при рассмотрении осесимметричной или обратносимметричной нагрузки для оболочек вращения задача сводится к уравнению второго порядка, где легко разобраться в осложнениях, вызванных наличием точек поворота. Типичным представителем такого случая является тороидальная оболочка (Е. Ф. Зе-нова, В. В. Новожилов, 1951 В. С. Чернина, 1955), Это замечание относится, однако, к любой оболочке неположительной кривизны в других случаях метод приводит просто к упрощению качественного анализа и нужных при решении выкладок (Р. Л. Малкина, 1954). Любопытно отметить, что существуют задачи, для которых краевые условия могут быть сформулированы в терминах комплексных усилий или перемещений,— в этом случае отпадает необходимость отделения вещественных и мнимых частей до получения решения (в аналитической форме). Задачи этого типа указаны в монографии К. Ф. Черных (1962, 1964), где излон ены все основные результаты, связанные с представлением соотношений теории оболочек в комплексной форме. Отметим из них следующие.  [c.242]

Метод сеток, или метод конечных разностей, является эффективным инструментом теоретического изучения конвективных процессов. Основная идея метода такова. В области определения дифференциальной задачи выбирается конечное множество точек (узлов), называемое сеткой. Функции и производные в каждом узле приближенно заменяются (аппроксимируются) некоторыми линейными комбинациями значений соответствующих функций, входяищх в уравнения и краевые условия, в узлах сетки. В результате этих замен нелинейная дифференциальная задача ЕК сводится к системе нелинейных алгебраических уравнений относительно приближенных значений искомых функций в узлах. Такую систему принято называть разностной задачей, или разностной схемой. Несмотря на нелинейность и большое, как правило, число неизвестных, разностная задача более предпочтительна для решения, чем исходная дифференциальная, так как допускает применение вычислительной техники. Найденное на ЭВМ решение разностной задачи (разностное решение) принимается за приближенное решение исходной задачи в узлах сетки. Оно имеет вид числовой таблицы, размер которой пропорционален количеству узлов.  [c.28]

Идея представления конструкций в виде набора дискретных элементов восходит к раннему периоду исследования конструкций летательных аппаратов, когда, например, крылья и фюзеляжи рассматривались как совокупности стрингеров, обшивки и работающих на сдвиг панелей. Хренников [1941] ввел метод каркасов — предшественник общих дискретных методов строительной механики — и применил его, представляя плоское упругое тело в виде набора брусьев и балок. Топологические свойства некоторых типов дискретных систем изучались Кроном [1939] ), который разработал универсальные методы анализа сложных электрических цепей и строительных конструкций. Курант [1943] дал приближенное решение задачи кручения Сен-Венана, используя кусочнолинейное представление функции искажения в каждом из треугольных элементов, совокупностью которых заменялось поперечное сечение тела, и формулируя задачу с помощью принципа минимума потенциальной энергии. Пример применения Курантом метода Ритца содержит в себе все основные моменты процедуры, известной теперь как метод конечных элементов. Аналогичные идеи использовал позже Пойа [1952]. Метод гиперокружностей , предложенный в 1947 г. Прагером и Сингом [1947] и подробно исследованный Сингом [1957] ), легко может быть приспособлен для конечноэлементных применений он проливает новый свет на приближенные методы решения некоторых краевых задач математической физики. В 1954 г. Аргирис и его сотрудники ) начали публикацию серии работ, в которых они далеко развили некоторые обобщения линейной теории конструкций и представили методы  [c.12]


Смотреть страницы где упоминается термин Метод решения краевых задач для линейных систем : [c.161]    [c.250]    [c.91]    [c.94]    [c.65]    [c.30]    [c.227]   
Смотреть главы в:

Численные методы в механике  -> Метод решения краевых задач для линейных систем

Строительная механика Специальный курс Применение метода граничных элементов  -> Метод решения краевых задач для линейных систем



ПОИСК



I краевые

Задача и метод

Задача краевая

Задачи и методы их решения

Задачи краевые - Решении

Краевой решение

Линейная задача

Линейные Краевые задачи

Линейные системы — Решение

Метод линейных систем

Метод систем

Методы линейного

Методы решения краевых задач

О краевых задачах для системы (7.27а)

Решение линейной краевой задачи

Решение линейных задач на ЭВМ

Решение системы

Решения метод

Система линейная



© 2025 Mash-xxl.info Реклама на сайте