Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные численные методы

Вместе с тем при сложном термосиловом, динамическом, квазистатическом или длительном нагружениях ответственных конструкций, изготовляемых по сложному технологическому процессу, адекватный анализ НДС может быть проведен только на основании решения краевых задач, базирующихся на реологических схемах, учитывающих различные нелинейные, зависящие от истории деформирования, свойства материала (рис. В.1). Кроме того, при расчете НДС должна быть учтена сложная геометрия конструкции. Ясно, что такого рода задачи могут быть решены в основном численными методами, наибольшей универсальностью из которых обладает метод конечных элементов (МКЭ).  [c.5]


Ниже приведены краткие сведения по двум основным численным методам решения задач упругости, пластичности и ползучести, необходимые для изложения результатов в следующих главах. Дополнительную информацию по этим методам можно найти в работах [15, 24, 51].  [c.119]

Основным численным методом решения дифференциальных уравнений теплопроводности является метод конечных разностей [23]. Формально он базируется на приближенной замене в дифференциальном уравнении и граничных условиях производных разностными соотношениями между значениями температур в узлах конечно-разностной сетки. В итоге для каждого узла с неизвестным значением температуры получается алгебраическое уравнение, которое для задачи стационарной теплопроводности может быть также получено из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплопроводящих стержней [12, 18]. Методы решения таких уравнений хорошо разработаны [24], а для реализации этих методов в математическом обеспечении современных ЭВМ предусмотрены стандартные программы. Алгебраическому уравнению для каждой узловой точки можно дать вероятностную интерпретацию и использовать для решения задач метод статистического моделирования (метод Монте-Карло) [12].  [c.44]

В этой короткой главе мы вкратце рассмотрели основные численные методы для расчета траекторий лучей и вычисления  [c.370]

Интегрирование задач ведется в основном численными методами. При изучении распространения одномерных волн в средах с усложненными свойствами использу  [c.3]

ОСНОВНЫЕ ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА ДВИЖЕНИЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.36]

Решение. Теория неидеальных газов не кончается на получении общих формул для вириальных коэффициентов. Следующая проблема — это расчет самих групповых интегралов . Для реалистических потенциалов Ф( ), например потенциала Ленарда— Джонса, это составляет хотя и техническую, но все же достаточно сложную процедуру, выполняемую в основном численными методами. В данной задаче мы рассмотрим случай простейшей ступенчатой модели для потенциала Ф(/ ) — модели твердых сфер, для которой в области Qdo f(R)=0 (Ф( )=0), в связи с чем расчет неприводимых интегралов (а следовательно, и вириальных коэффициен-k  [c.758]

В этой главе обсуждаются основные численные методы расчета плоских течений сжимаемой жидкости в прямоугольных координатах. Большинство из этих методов построено на основе методов и рассуждений, уже приведенных в гл. 3 для случая течений несжимаемой жидкости, поэтому содержание главы 3 существенно для понимания материала настоящей главы.  [c.333]


Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]

Определение КИН на основе аналитических решений ограничено случаями тел с простой геометрической формой, находящихся под воздействием однородного поля напряжений [16, 253]. Для реальных конструкций, содержащих трещины, получение аналитических решений связано со значительными математическими трудностями. Поэтому для расчета КИН становится необходимым использование численных методов. В настоящее время одним из самых общих методов, обладающих наименьшими ограничениями, является МКЭ [34, 55, 154, 205, 217]. Поэтому в основном все численные методы определения КИН основываются на МКЭ.  [c.194]

Решение тепловой и диффузионной задачи выполняют численным методом с помош,ью ЭВМ. Результаты расчета распределения Нд для стыкового многослойного соединения с Х-об-разной разделкой приведены на рис. 13.32. Основные зависимости насыщения сварных соединений водородом следующие  [c.535]

Вначале (гл. 1) даны общие представления о САПР как о сложной организационно-технической системе и перспективах ее развития. Затем анализируются традиционные процессы проектирования ЭМП и возможности их преобразований в САПР (гл. 2). В гл. 3 на основе анализа обобщенной модели ЭМП формализуются задачи проектирования и приводятся к виду, удобному для решения на ЭВМ. Показывается, что задачи проектирования ЭМП по сути являются оптимизационными. В гл. 4 дается краткий обзор методов расчетного моделирования ЭМП. Часть методов, особенно теоретического плана, достаточно подробно описывается в специальных учебных курсах по ЭМП. Однако здесь целесообразно изложить основные идеи методов по классам, чтобы показать имеющиеся широкие возможности для составления семейства моделей ЭМП в САПР. Значительное внимание уделяется новым, нетрадиционным для электромеханики методам (статистическим, кибернетическим и численным).  [c.4]

Одним из эффективных численных методов решения задач теории упругости и пластичности является метод конечных разностей. Идея этого метода состоит в замене основных дифференциальных уравнений задачи уравнениями в конечных разностях. При этом задача сводится к решению системы алгебраических уравнений.  [c.144]


Как правило, интегральные уравнения решают численно методом последовательных приближений или методом механических квадратур [231]. Ясно, что в любом случае требуется численно вычислять сингулярные интегралы. Существуют два основных подхода к решению этого вопроса.  [c.97]

Основное отличие задач статики стержней с промежуточными связями, рассмотренных в 2.2, от задач статической устойчивости стержней с промежуточными связями заключается в том, что в задачах устойчивости неизвестными являются внешние силы (их критические значения). Численные методы определения критических значений нагрузок для стержней с промежуточными связями изложены в 3.5.  [c.112]

Во второй части учебника изложены основные положения динамики стержней, дан вывод уравнений движения стержней в линейной и нелинейной постановке приведены уравнения малых колебаний пространственно-криволинейных стержней с изложением численных методов определения частот и форм колебаний. Большое внимание уделено неконсервативным задачам с изложением методов исследования динамической устойчивости малых колебаний. Рассмотрены параметрические и случайные колебания стержней. Приведены примеры численного решения прикладных задач с использованием ЭВМ.  [c.2]

Большое внимание уделено численным методам решения линейных и нелинейных задач механики деформирования упругих, упругопластических и вязкоупругих тел, численным методам решения дифференциальных и интегральных уравнений, а также прямым вариационным методам. В учебнике изложены основные положения метода конечных элементов, что обеспечит лучшую подготовленность студентов к изучению курса строительной механики. Даются понятия о методе граничных элементов.  [c.3]

Можно привести и еще ряд примеров плодотворного использования метода молекулярной динамики для анализа различных подходов к рассмотрению систем многих частиц. Кроме того, этим методом получены фундаментальные результаты о поведении систем твердых дисков и твердых сфер и о фазовых переходах в данных системах, позволившие значительно расширить наши представления о поведении статистических систем. В следующих параграфах этой главы мы рассмотрим в основном результаты, полученные для различных систем численными методами.  [c.198]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

В машинах и аппаратах тесно переплетаются процессы различной природы. Поэтому их основные параметры, полученные на основе испытания натурных образцов, обычно не соответствуют значениям этих параметров, заложенным в расчет конструкции в процессе ее проектирования. В связи с этим возникает необходимость доводочных испытаний опытных образцов машины или аппарата. Большую помощь в доводочных испытаниях оказывает математическая модель машины или аппарата, представляющая собой совокупность уравнений, формул, констант и логических условий, которые определяют взаимосвязь параметров рабочего процесса. Дифференциальные уравнения, входящие в математическую модель, при ее использовании решаются численным методом.  [c.23]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Математическое описание движения жидкой среды общими дифференциальными уравнениями, учитывающими все физические свойства, присущие этой среде, является сложной задачей. Если даже ограничиться учетом только текучести, вязкости и сжимаемости, то и тогда уравнения движения, выражя ющие основные законы механики, оказываются настолько сл-.к ными, что пока не удалось разработать общих аналитических методов их решения. Применение численных методов интегрирования таких уравнений на базе современных ЭВМ также связано со значительными трудностями. Поэтому в гидромеханике широко используют различные упрощенные модели среды и отдельных явлений.  [c.21]


Теория разностных схем в основном развита для линейных задач и опирается, как отмечалось ранее, на три основных понятия аппроксимацию исходных дифференциальных уравнений, устойчивость вычислительного процесса, сходимость численного метода к решению. Для нелинейных задач теория, как правило, не развита исследование устойчивости в этих случаях сопряжено с большими трудностями и проводится обычно на линейных аналогах конкретной задачи. Например, при исследовании устойчивости задач газовой динамики часто рассматриваются уравнения в акустическом приближении.  [c.232]

Существуют два основных численных. метода решения уравнений в частных производных метод конечных разностей и метод конечных элементов. Они отличаются сп н обами получения системы уравнений для значений искомых функций в узловых точках. Метод конечных разностей базируется непосредственно на дифференциальном уравнении и граничных условиях, а метод конечных элементов — на эквивалентной вариационной постановке задачи.  [c.69]

Основные численные методы математического моделирования сложных процессов, происходящих в сплошной среде, описаны в большом числе монографий (см., напри мер, [21 29]) и огромном числе статей. Они претерпевают непрерывную эволюцию и переоценку вместе с ростом сложности задач и увеличением возможностей мощных ЭВМ быстродействия, оперативной памяти, многопроцессорности. Ряд широко применяемых вычислительных методов тесно связан и широко использует результаты аналитического исследования задач.  [c.23]

Решение. Теория неидеальных газов не кончается на получении общих формул для вирйаль-ных коэффициентов. Следующая проблема — это расчет самих групповых интефалов Рк Для реалистических потенциалов Ф(Д), например, потенциала Ленарда-Джонса, это составляет хотя и техническую, но все же достаточно сложную процедуру, выполняемую в основном численными методами. В данной задаче мы рассмотрим случай простейшей ступенчатой модели дяя потенциала Ф(Д) — модели твердых сфер, для которой в области О < Д < о /(Д) = -1 (Ф(Д) = -Ноо), а при Д > 0 /(Д) = О (Ф(Д) = 0), и связи с чем расчет неприводимых интегралов /Зк (а следовательно, и вириальных коэффициентов Бц. = -Щ/Зц), составленных из произведения функций /(гу), превращается в геометрическую задачу по исчислению объемов пересекающихся сфер радиусом о- Так, величина /3[ включает в себя объем всей сферы радиусом  [c.397]

Андерсон [3.10] дал точное решение задачи о прямоугольной лннни, но при довольно ограниченных условиях, приведенных ниже. Оно включено в справочник, главным образом, из-за его ценности прн проверке результатов, полученных другими авторами, в основном численными методами описанными в подпараграфе 3.4.1,  [c.42]

Именно решение задач в этих двух предельных постановках для одиночного тела в бесконечном потоке поддается аналитическим методам, и основные достижения в этих направлениях считаются классическими и представлены в учебной и научной литературе по гидродинамике. Кроме того, к настоящему времени приобрели известность и результаты решений об обтекании сферы и цилиндра бесконечным поступательным потоком при Re 1 Ч- 10. Видимо, дальнейший прогресс построения полей при обтекании с большими числами Рейнольдса с учетом вознпкаюш их нестационарных эффектов связан с использованием численных методов, а также разработкой приближенных схем обтекания с учетом экспериментальных данных.  [c.120]

Данное пособие состоит из двух глав и приложения. В первой главе изложены методики, приведены примеры и программы получения с помощью системы аналитических вычислений REDU E, а также численных методов основных уравнений аналитической динамики (уравнений Лагранжа, Гамильтона, Рауса и др.). Рассмотрена задача вывода уравнений Эйлера - Лагранжа с использованием общих теорем динамики, а также уравнений относительного движения в обобщенных координатах.  [c.3]

Прохождение излучений через защиту с неоднородностями описывается интегро-дифференциальным уравнением переноса излучений, которое для рассматриваемых задач не имеет аналитического решения. Среди возможных численных методов решения подобных задач можно указать на мето.д Монте-Карло и применение многогрупповых методов решения кинетического уравнения к многомерным геометриям. Метод Монте-Карло в принципе пригоден для строгого решения любой задачи прохождения излучений через неоднородности. Основными возможными преградами для его использования являются ограниченное быстродействие и память ЭВМ.  [c.139]

Как уже указывалось, векторная форма записи уравнений равновесия или движения стержня инвариантна по отношению к координатным системам, однако при численных методах решения уравнений всегда переходят к скалярной форме записи уравнений, которая зависит от выбранной конкретной системы координат. От удачного выбора координатной системы существенно зависит зфчфективность решения задачи. Основное отличие ортогональных прямолинейных координатных осей с базисом i, от ортогональных криволинейных с базисом е, (рис. П.4) заключается в том, что базисные векторы i не зависят  [c.291]

В пятое издание княги внесены некоторые изменения, относящиеся К главам I, II, VI, VIII и X, посвященным гидравлике, основным уравнениям гидрогазодинамики, теории пограничного слоя, соплам и диффузорам, крылу и решеткам лопаток заново написана мною глава VII (кроме 6) о турбулентных струях, добавлена глава XIV о численных методах расчета газовых течений, составленная В. В. Дугановым ( 2, 4, 5, 6) и В. Д. Захаровым ( 1, 3), и дополнена В. В. Дугановым глава IV ( 7 — 9) некоторыми сведениями по теории сверхзвуковых течений.  [c.8]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]


Численный метод. Анализ различных разностных схем для решения системы уравнений пограничного слоя показывает, что наиболее удобными здесь являются неявные шеститочечные схемы. Для составления такой схемы на координатной плоскости X, у выбирается основная и две вспомогательные сетки.  [c.68]


Смотреть страницы где упоминается термин Основные численные методы : [c.36]    [c.333]    [c.70]    [c.36]    [c.333]    [c.36]    [c.201]    [c.484]    [c.94]    [c.2]    [c.7]    [c.6]   
Смотреть главы в:

Вычислительная гидродинамика  -> Основные численные методы



ПОИСК



Me численные (см. Численные методы)

Методы численные

Методы численные (см. Численные методы)



© 2025 Mash-xxl.info Реклама на сайте