Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Рейнольдса для несжимаемых жидкостей

УРАВНЕНИЯ РЕЙНОЛЬДСА ДЛЯ НЕСЖИМАЕМЫХ ЖИДКОСТЕЙ  [c.236]

Влияние эксцентрицитета вала относительно втулки этими уравнениями не учитывается, но будет рассмотрено ниже. Если вязкость жидкости практически постоянна, то приведенные выше уравнения дают теоретическую величину утечек при заданной геометрии уплотнения. Подстановка этих значений в уравнение сплошности для несжимаемой жидкости позволяет найти скорость истечения ее через кольцевой зазор лабиринта. Зная величину этой скорости, вязкость и плотность жидкости, а также радиальный зазор, можно подсчитать критерий Рейнольдса. Если критерий Рейнольдса ниже значений переходного режима, то первоначальные допущения о ламинарности потока и подсчет величины утечек являются достоверными.  [c.51]


Получены уравнения движения вязкой несжимаемой жидкости в безразмерной форме. Для подобия течений такой жидкости должны быть одинаковы полученные уравнения в безразмерной форме, а для этого необходимо выполнение критериев подобия, т. е. чтобы были одинаковы для подобных течений числа Струхаля, Эйлера, Рейнольдса, Фруда.  [c.579]

УРАВНЕНИЯ РЕЙНОЛЬДСА ДЛЯ РАЗВИТОГО ТУРБУЛЕНТНОГО ДВИЖЕНИЯ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.89]

При низкочастотных колебаниях влияние их на структуру турбулентных потоков, вероятно, осуществляется посредством изменения профиля средней скорости в пристеночной области течения. В этом случае для качественного анализа могут быть использованы нестационарные уравнения Рейнольдса. Следует отметить, что только при сравнительно низкочастотных колебаниях возможно использовать метод осреднения турбулентных пульсаций по минимальному периоду их возмущений, который в данном случае много меньше, чем период основных регулярных колебаний. Для несжимаемой жидкости в случае плоскопараллельного нестационарного течения уравнение движения Рейнольдса имеет вид  [c.184]

Уравнения движения, выраженные через осред-ненные скорости (уравнения Рейнольдса), для турбулентного неустановившегося движения несжимаемой жидкости имеют вид  [c.19]

Можно считать, что течение газа в зоне минимального зазора описывается уравнением Рейнольдса для осесимметричного течения несжимаемой жидкости с параболическим распределением скорости по толщине слоя. Уравнение в цилиндрических координатах имеет вид  [c.32]

В этой главе делается попытка применить метод конечных элементов для решения полной системы уравнений движения вязкой несжимаемой жидкости. Решение справедливо для малых чисел Рейнольдса, однако если удастся найти достаточно точный метод рассмотрения эффектов пограничного слоя, то это решение можно будет распространить на случай более высоких чисел Рейнольдса.  [c.243]

Задача об изменении гидравлического сопротивления трубы при неустановившемся турбулентном движении жидкости является настолько сложной, что попытки сколько-нибудь строгого ее решения до сих пор встречают непреодолимые трудности. Это связано в основном с неизвестностью законов, которым подчиняется турбулентность в неустановившемся потоке. При ряде предположений оказываются возможными только приближенные оценки изменения гидравлического сопротивления трубы. Одно из исходных предположений состоит в том, что характерное для исследуемого неустановившегося процесса время намного превосходит период турбулентных пульсаций. В этом случае могут использоваться уравнения Рейнольдса осредненного турбулентного движения жидкости. При осесимметричном потоке с пренебрежимо малым изменением давления по радиусу сечения трубы уравнения Рейнольдса для движения несжимаемой жидкости, записанные в цилиндрических координатах г и л , имеют вид [35]  [c.208]


Для несжимаемой жидкости уравнения Рейнольдса в декартовых коор-данатах имеют вид  [c.129]

Уравнение Навье —Стокса заметно упрощается для движений с малым числом Рейнольдса. Для стационарного движения несжимаемой жидкости Э10 уравнение имеет вид  [c.89]

Уравнение (7-22) показывает, что для того, чтобы два геометрически подобных течения были динамически подобными в случае движения несжимаемой жидкости в замкнутой системе, должны быть равны только числа Рейнольдса.  [c.157]

Как уже отмечалось при изложении теории пограничного слоя в потоке несжимаемой жидкости, путь непосредственного интегрирования уравнений Навье — Стокса при тех значениях числа Рейнольдса, которые характерны для теории пограничного слоя первого приближения (уравнения Прандтля), в рассматриваемых случаях оказывается недоступным, причем не только для аналитического, но и для численного, машинного решения. На помощь приходят асимптотические методы (методы малых возмущений). Мы уже познакомились с частным случаем применения такого рода методов, когда рассматривали основной для теории пограничного слоя прием сшивания решений уравнений Прандтля с внешним невязким потоком ( 86).  [c.700]

Если рассматривать смазку между поверхностями как неоднородную сплошную среду (тонкие слои смазки вблизи поверхностей взаимодействующих тел подчиняются соотношениям, характерным для вязкоупругих материалов, в то время как остальная её часть описывается уравнением вязкой несжимаемой жидкости, т.е. уравнением Рейнольдса), то построенное решение позволяет с единых позиций описать различные режимы трения, имеющие место в контакте реальных тел при малых числах Зоммерфельда вязкоупругий пограничный слой смазки играет определяющую роль в контакте (режим граничного трения), в то время как при больших числах Зоммерфельда определяющими являются объёмные свойства смазки (гидродинамическое трение). Полученные аналитические зависимости хорошо описывают известные экспериментальные результаты (см. [217]).  [c.297]

Уравнение (9.4.11) для ноля скоростей совместно с уравнением (9.4.8) для давления и выражением (9.4.15) для корреляций случайных сил лежат в основе статистической теории турбулентного движения в несжимаемой жидкости. Хотя уравнение (9.4.11) на первый взгляд кажется не сложнее, чем гидродинамическое уравнение Навье-Стокса, тот факт, что теперь v(r, ) — случайная переменная сильно усложняет задачу. Дело в том, что для поля скоростей v, усредненного по некоторому промежутку времени или по реализациям, не удается получить замкнутого уравнения. Действительно, после усреднения (9.4.11) (скажем, по реализациям) в уравнение для v войдут корреляционные функции пульсаций Jv = v —v типа ( 6v 6vp). В уравнения для этих функций войдут корреляционные функции более высоких порядков и т. д. Мы получим так называемую цепочку уравнений Рейнольдса проблему замыкания которой до сих пор не удается решить. Дело также осложняется тем, что в задаче фактически нет малого параметра, поэтому не удается воспользоваться теорией возмущений. Как известно, в таких случаях необходим метод, позволяющий сравнительно просто получать общие соотношения и строить самосогласованные приближения, не опирающиеся на теорию возмущений. С этой точки зрения формулировка теории турбулентности на основе стохастического уравнения (9.4.11), при всей ее внешней простоте, мало что дает. Гораздо удобнее перейти к описанию турбулентного движения с помощью функционала распределения для поля скоростей и вывести для него уравнение Фоккера-Планка, которое в компактной форме содержит информацию о всей цепочке уравнений Рейнольдса.  [c.258]

При условиях, когда значение числа Рейнольдса меньше 2300, а число Маха меньше 0,2, течение можно рассматривать как ламинарное и несжимаемое. Таким образом, величина /иРе , необходимая для подстановки в,уравнение (2.34), может быть вычислена способом, аналогичным для течения жидкости, описанным  [c.55]


В уравнениях (126) все величины безразмерны, а Яе=Ш/у есть число Рейнольдса. Присутствие в этих уравнениях величины Ке как параметра показывает, что для подобных потоков несжимаемой жидкости должно не только соблюдаться геометрическое подобие, но и оставаться постоянным число Рейнольдса. Хотя Ке является единственным параметром, явно появляющимся в уравнении (126), его может оказаться недостаточно для доказательства подобия даже потоков несжимаемых жидкостей, для которых составлены уравнения (126). Если граница потока не является неподвижной, а представляет свободную поверхность  [c.198]

В главе IV были рассмотрены простейшие решения точных дифференциальных уравнений установившегося движения вязкой несжимаемой жидкости. На основании сказанного выше эти решения определяют класс пока только возможных простейших установившихся движений вязкой несжимаемой жидкости, которые получили название ламинарных течений. Вопрос же о реальной осуществимости этих возможных простейших движений должен решаться отдельно либо с помощью непосредственной экспериментальной проверки основных особенностей ламинарных течений, либо с помощью теоретических исследований условий устойчивости этих течений. Экспериментальная проверка основных особенностей ламинарного течения, например, в круглой цилиндрической трубе показала, что для осуществимости ламинарного движения необходимо выполнение двух условий. Первое из этих условий заключается в том, что число Рейнольдса не должно превышать своего критического значения, т. е.  [c.385]

В работах [1, 21 исследовалось течение вязкой несжимаемой жидкости в расширяющемся двумерном канале, стенки которого становятся параллельными на большом расстоянии вверх и вниз по потоку (ширина канала на выходе в два раза превосходила ширину яа входе). Для расчетов использовался численный метод, основанный на введении в уравнения малого параметра, сводящего численную процедуру в конечном счете к решению систем линейных алгебраических уравнений на каждом шаге итерации. Расчеты показали, что при числе Рейнольдса Не, вычисленном по ширине входной части и равном 8я, возникают возвратные течения небольшой  [c.235]

Асимптотические методы решения уравнений Навье — Стокса нашли применение к задачам обтекания малых препятствий или неровностей, расположенных в основании пограничного слоя [59, 60]. В работе [59] рассматривается обтекание несжимаемой жидкостью единичной шероховатости , т. е. выступа с высотой, много меньшей толщины пограничного слоя. Исследуется такой режим течения, при котором число Рейнольдса, вычисленное по характерному размеру выступа и скорости внутри пограничного слоя на высоте выступа, у таЪ, велико. Поэтому в первом приближении для области с характерным размером порядка высоты выступа задача сводится к решению уравнений Эйлера. Использование принципа сращивания асимптотических разложений позволяет определить граничные условия в набегающем на выступ потоке и вдали от него. В этих местах возмущения, вносимые выступом, должны затухать. Невозмущенный поток локально имеет вид и у, у = 0. Коэффициент пропорциональности в формуле для и должен соответствовать местному значению напряжения трения на дне невозмущенного пограничного слоя. В работе [59] исследованы также течения около выступов, постепенно понижающихся вверх и вниз по потоку. Показано, что при слишком резком  [c.262]

В результате для элемента модели осредненного турбулентного потока получают дифференциальные уравнения движения, названные уравнениями Рейнольдса, В частном случае несжимаемой жидкости эти уравнения в прямоугольной системе координат в сокращенной форме записываются  [c.55]

Множитель перед дробью правой части уравнения (13-30) получается из сравнения интегрального уравнения для рассматриваемых условий с соответствующим выражением для случая продольного обтекания плоской пластины потоком несжимаемой жидкости (М=0) С/о — коэффициент трения на продольно обтекаемой плоской пластине при том же значении числа Рейнольдса набегающего потока Я о — соответствующий формпараметр, который в случае ламинарного пограничного слоя равен 1,56, а в случае турбулентного слоя при Re—10 составляет 1,733.  [c.475]

Мы видим, таким образом, что для вязкой несжимаемой жидкости, находящейся под действием силы тяжести, два течения, обладающие одинаковыми числами Рейнольдса и Фруда, являются подобными. Конечно здесь, как и в дальнейшей части этого параграфа, всегда предполагается, что речь идёт о течениях около или внутри геометрически подобных тел. Примером, где закон подобия должен был бы применяться в только что полученной форме, является испытание моделей кораблей. В самом деле, сопротивление корабля слагается как из сопротивления трения, так и из волнового сопротивления, обязанного своим происхождением волнам, образующимся на свободной поверхности жидкости под действием силы тяжести. Однако на практике мы встречаемся со следующим затруднением пусть величина модели в 100 раз меньше величины судна в натуре по уравнению (9.13), для того чтобы число Фруда р осталось неизменным, нужно взять скорость в 10 раз меньше скорости судна в натуре. Чтобы число Рейнольдса Р тоже осталось неизменным, коэффициент вязкости V нужно взять в 1000 раз меньше коэффициента вязкости воды практически этого осуществить нельзя. Поэтому при испытаниях применяют тоже воду и сопротивление трения определяют по особым опытным формулам. Остаточное же сопротивление — волновое — пересчитывается по закону подобия для идеальной несжимаемой жидкости, находящейся под действием силы тяжести по этому закону  [c.409]


Второй том начинается с математического раздела, посвященного спектральной теории случайных полей (в том числе и полей, являющихся не однородными, а только локально однородными) далее подробно излагается теория изотропной турбулентности (основное внимание здесь уделено различным методам замыкания уравнений для моментов гидродинамических полей изотропной турбулентности в несжимаемой жидкости, но приводятся также и некоторые выводы, относящиеся к сжимаемому случаю) рассмат- риваются общие представления об универсальном локальном строении турбулентности при больших числах Рейнольдса и их следствия (включая и вопрос об относительной диффузии, т. е. увеличении размера облака примеси, переносимого турбулентным потоком) и исследуются спектральные характеристики турбулентности в расслоенной жидкости приводятся основные сведения  [c.26]

Простейшие связи такого рода и были установлены Рейнольдсом с помощью осреднения уравнений гидродинамики несжимаемой жидкости. Будем исходить из уравнений для импульса, т. е.  [c.226]

Нестационарные уравнения для нижней палубы трехслойной теории применяются в [115] к исследованию резонансных троек в пограничном слое несжимаемой жидкости при больших числах Рейнольдса. Предпринятый в [115] анализ, с одной стороны, придает рациональный базис основным предположениям [111,112], а с другой стороны, дополняет представления [113, 114] о резонансном взаимодействии волн неустойчивости.  [c.9]

Для упрощения окончательной математической формулировки задачи все уравнения должны быть приведены к безразмерному виду подходящим выбором единиц и L, для скорости и длины соответственно. Только тогда станет ясно, сколько существенных параметров содержит задача. В случае несжимаемой жидкости безразмерная форма основных дифференциальных уравнений может быть получена прямо из (1.2.2), если формально положить р =1, = где Н есть число Рейнольдса, определяемое формулой  [c.12]

Равенство (7.17) представляет собой формулу Стокса для сопротивления шара при его движении в неограниченной вязкой жидкости. Согласно этой формуле сопротавленае движению шара про-аорцаонально коэффициенту вязкости, радиусу шара и скорости движения в первой степени. Формула Стокса (7.17) для сопротивления шара получена при условии отбрасывания в уравнениях движения вязкой несжимаемой жидкости квадратичных членов инерции, поэтому она может считаться справедливой только при сравнительно малых значениях чисел Рейнольдса. Тем не менее, эта формула находит себе широкое применение. В частности, она широко используется 6 коллоидной химии, в молекулярной физике и метеорологии. Пользуясь этой формулой, можно определять скорость осаждения мелких капель тумана, коллоидных частиц, частиц ила и прочих мелких частиц. Приравнивая силу сопротивления шара (7.17) равнодействующей сил от гидростатического давления (архимедовой силе), получим следующую формулу для предельной скорости падения шарика малых размеров в вязкой жидкости  [c.181]

Полученные дифференциальные уравнения (2.16) носят название дадб-ференциальных уравнений Рейнольдса для смазочного слоя. Сопоставляя эти ур авнения с полными дифференциальными уравнениями установившегося движения несжимаемой вязкой жидкости, мы видим, что для перехода от полных уравнений к уравнениям (2.16) должны быть отбро1цены не только все квадратичные члены инерции, но и часть слагаемых, обусловленных вязкостью. Таким образом, щффе ренциальные уравнения Рейнольдса совершенно не учитываю" квадратичных членов инерции и лишь частично учитывают слагаемые от вязкости.  [c.197]

Если первой ступенью развития приближённых методов использования дифференциальных уравнений движения вязкой жидкости считать дифференциальные уравнения Стокса, а второй ступенью — дифференциальные уравнения Рейнольдса для слоя, то уравнения (1.6) Озеена следует считать уже третьей ступенью развития приближённых методов решения отдельных задач движения вязкой несжимаемой жидкости.  [c.227]

Развитие методов, основанных на компактных аппроксимациях, фактически происходило в двух направле1шях — конструирование нецентрированных схем третьего порядка и центрированных схем четвертого порядка. Под нецентрированными (или несимметричными) схемами здесь условно понимаются схемы, содержащие операторы, меняющие свою самосопряженную или кососимметричную часть в зависимости от знаков коэффициентов уравнений или от знаков собственных значений матриц в случае систем уравнений. Наоборот, компактные схемы, разностные операторы в которых не переключаются при изменении этих знаков, в дальнейшем будем называть центрированными (или симметричными), имея в виду, что соотношения типа (0.17) для первых и вторых производных в этом случае будут иметь равные по модулю коэффициенты a j и a ,a также j3 , и jSi. Не-центрированные схемы треть. го порядка были впервые предложены, исследованы и применены автором этой книги [4, 5, 27 -29]. Первая из этих публикаций относится к 1972 г. Позднее появились центрированные схемы четвертого порядка [30-36], предложенные почти одновременно несколькими авторами (первое упоминание о таких аппроксимациях в [37], см. также [1]). Если последние применялись главным образом при аппроксимации уравнений Навье-Стокса несжимаемой жидкости, то схемы третьего порядка прошли всестороннюю апробацию для различного класса задач - в случае уравнений Эйлера и Навье-Стокса сжимаемого газа (задачи о внутренних и внешних течениях в широком диапазоне чисел Маха и Рейнольдса), в случае уравнений гидродинамики, записанных в различных формах, в случае уравнений Рейнольдса осредненных турбулентных течений и т.д. Данная книга посвящена именно этому классу компактных схем. Компактные аппроксимации рассматриваются в ней прежде всего как эффективный способ дискретизации конвективных членов, содержащих несамосопряженные операторы наоборот, дискретизация членов с вязкостью вследствие самосопряжениости соответствующих операторов интерпретируется как второстепенная часть алгоритма, реализуемая различными способами. Таким образом, область целесообразного применения описываемых здесь методов — задачи с преобладающей ролью конвекции или чисто конвективные задачи. Именно таковыми в большинстве практически важных случаев являются задаад аэрогидродинамики. Благоприятные качества схем третьего порядка обусловлены в случае уравнений гидро-12  [c.12]

В случае больших чисел Рейнольдса (Re > 1) часто можно считать, что влияние вязких сил проявляется лишь в топких пограничных слоях у поверхностей частиц и, если нет отрыва этих пограничных слоев (что имеет место при обтекании пузырьков), то в подавляющей части объема dj несущей фазы в ячейке влияние вязкости мало и микродвижепие около частиц определяется взаимодействием нелинейных инерционных сил и сил давления. Такой режим микродвижения будем называть инерционным. Уравнения (3.3.1), (3.3.2) и (3.3.14) для этого режима сведутся к уравнениям идеальной несжимаемой жидкости = — piS , pi = onst)  [c.119]

Для ИПХТ-М, как и для ИТП, характерен турбулентный режим течения, и при определении движения расплава решающее значение имеет турбулентная вязкость v . Расчет поля скоростей движения в меридиональных плоскостях (v) ведется полуэмпирическим методом (методика 8) решается уравнение движения Навье—Стокса (с учетом дополнительных рейнольдсовых членов) совместно с уравнением несжимаемости жидкости, причем в решение вводится поле эффективной вязкости Нэ> базирующееся на экспериментальных данных о распределении V в исследованных типичных объектах. Здесь = v + v , где V — физическое значение кинематической вязкости (обычно вводится через "эффективное число Рейнольдса Reg = Vq Во мно-  [c.93]


Для турбулентного пограничного слоя несжимаемой жидкости экспериментально подтверждены логарифмический профиль скоростей и связанные с ним полуэмпирические теории турбулентности Прандт-ля — Кармана. При этом установлено, что логарифмический профиль скоростей мало чувствителен к продольному градиенту скорости невозмущенного потока при конфузорном течении, а также при диффу-зорном течении в области, удаленной от точки отрыва. Соответственно консервативны в этом смысле и зависимости i(l), на что указывалось в работе В. М. Иевлева [Л. 1]. Уравнения Рейнольдса, обобщенные на течение сжимаемого газа, позволяют. распространить на последний полуэмпирические теории турбулентности, так что в получающихся  [c.106]

Так, Лихтенштейн [20] и Одквист [23] доказали суш,ествова-ние решения для общего случая вязкой несжимаемой жидкости в замкнутой области, содержащей конечное число частиц конечных размеров. В случае уравнений Стокса решение также единственно, но при больших числах Рейнольдса это не так. Например, Тейлор [29], рассматривая течение между двумя вращающимися концентрическими цилиндрами, показал, что если число Рейнольдса при вращении внутреннего цилиндра по отношению к внешнему превышает определенную величину, возникает неустойчивость течения, приводящая к установлению другого течения, которое само по себе устойчиво. С увеличением числа Рейнольдса течение становится неустановившимся с вполне определенной периодичностью. Для краевых задач, в которых на границах заданы производные компонент вектора или комбинации скоростей и производных, сформулировать требуемые условия не удается. Обычно сама физическая природа интуитивно используется при формулировке подходящих граничных условий, приводящих к единственному существующему решению.  [c.79]

З равненпя (59) называются уравнениямп Рейнольдса для осредненного турбулентного движения несжимаемой жидкости они были выведены Рейнольдсом в 1895 г. Этп уравнения можно рассматривать как своего рода обобщение уравнений Навье-Стокса на случай турбулентного двшкения. В самом деле, еслп пульсации скорости" в потоке отсутствуют, то последние три слагаемых в каждом из этих уравнений отпадают, осредненные вс.личины в этом случае совпадают с актуальными, и из уравиенип Рейнольдса получаются уравнения Навье-Стокса, как частный случай.  [c.546]

Эти уравнения применяются для расчета ламинарного пограничного слоя. Уравнения для плоского турбулентного пограничного слоя несжимаемой жидкости при установившемся в среднем течении. могут быть получены из уравнений Рейнольдса путем оценки порядка величин, входящих в него, или непосредственно из уравнений (97). Для этого в уравнения (97) вместо мгновенного значения каждого параметра следует подставить сумму осредненных и пульсационных его составляющих и выполнить осреднение уравнений по правилам Рейнольдса [6]. В итоге для плоского турбулентного пограничногс слоя получают уравнения в следующем виде  [c.77]

Простым и хорошо согласующимся с опытными данными является метод расчета турбулентного пограничного слоя в несжимаемой жидкости, предложенный М. Р. Хэдом [Л. 124]. Для вывода вспомогательного уравнения допускается, что развитие пограничного слоя не зависит от числа Рейнольдса, а количество жидкости на единицу обтекаемой поверхности, увлекаемое из невоз-мущешного потока в пограничный слой, зависит от толщины пограничного слоя, скорости на внешней границе слоя и ее распределения по обтекаемой поверхпости. Допущение о незав-исимости распространения пограничного слоя от числа Рейнольдса обосновывается тем, что развитие турбулентного пограничного слоя можно уподобить развитию области смешения турбулентных свободных струй и следов, не зависящему от числа Рейнольдса.  [c.400]

Как известно, Осборну Рейнольдсу удалось так преобразовать гидродинамические уравнения движения вязкой однородной несжимаемой жидкости, что в эти полученные им уравнения входят только некоторые осредненные значения компонент скорости и вместе с ними шесть величин, которые характеризуют состояние турбулентности в данном месте и в данное время. Эти величины, таким образом, представляют шесть новых неизвестных функций координат и времени, и полученной Рейнольдзом системы уравнений недостаточно для того, чтобы из них и из начальных значений определить неизвестные функции.  [c.45]

Интерес к длинноволновой асимптотике уравнения Орра-Зоммер-фельда возникает, в частности, потому, что собственные решения линеаризованных уравнений свободного взаимодействия [78, 79, 81] являются предельной формой волн Толлмина-Шлихтинга в несжимаемой жидкости с прилегающими к стенке критическими слоями [52, 53]. При этом дисперсионное соотношение, которое в точности совпадает с вековым уравнением задачи Орра-Зоммерфельда, содержит целый спектр решений, не рассмотренный в [51, 174, 175]. Первая мода колебаний из указанного спектра может быть как устойчивой, так и неустойчивой. Ниже строятся решения для каждой из подобластей (включая критический слой), на которые при больших числах Рейнольдса разделяется возмущенное поле скоростей в линейной задаче устойчивости. Выводятся дисперсионные соотношения, описывающие окрестности верхней и нижней ветвей нейтральной кривой для пограничного слоя. Данные соотношения, содержащие нейтральные решения как частный случай, асимптотически переходят друг в друга в неустойчивой области между обеими из этих ветвей.  [c.55]

Впервые безразмерные числа были введены при рассмотрении вопроса о подобии течений. В гидродинамике часто приходится проводить эксперименты с моделями и потом уже полученные данные переносить на реальные тела. Простые рассуждения, основывающиеся на уравнениях движения для описания двух течений с различными гидродинамическими параметрами, приводят к тому, что для вязкой несжимаемой жидкости, когда отсутствуют внешние силы, а также внешние поверхности, два течения подобны, если, кроме кинематического подобия (т. е. геометрического подобия и подобия поля скоростей), для этих течений равны числа Рейнольдса. Число Рейнольдса Re=pu//1l=u//v (где I — характерный масштаб движения, например радиус трубы при движении в ней жидкости, V — скорость потока и V — кинематическая вязкость) играет очень большую роль в гидродинамике и акустике, и далее нам часто придется иметь с ним дело. Если необходимо учитывать наличие внешних сил, например силы тяжести, то в добавление к числу Ке оказывается необходимым ввести также еще число Фруда Рг=и // , и тогда два течения подобны, когда, кроме кинематического подобия, числа Ке и Рг обоих течений равны. При учете сжимаемости жидкости в рассмотрение необходимо включить еще число Маха М=и/с, где с — скорость звука в жидкости. Если учитывается теплопроводность жидкости, появляется безразмерное число Прандтля г= Ср1к= 1р 1=у1 1, представляющее собой материальную константу среды, не зависящую от свойств потока.  [c.21]

Вторая часть начинается с математической главы, посвящённой спектральной теории случайных полей (в том числе и полей, являющихся не однородными, а только локально однородными) далее подробно излагается теория изотропной турбулентности (основное внимание здесь уделено различным методам замыкания уравнений для моментов гидродинамических полей изотроп-, ной турбулентности в несжимаемой жидкости, но приводятся также и некоторые выводы, относящиеся к сжимаемому случаю) рассматриваются общие представления об универсальном локальном строении турбулентности при больших числах Рейнольдса и их следствия (включая и вопрос об относительной диффузии, т. е. увеличении размера облака примеси, переносимого турбулентным потоком) и исследуются спектральные характеристики турбулентности в расслоенной жидкости приводятся основные сведения о распространении электромагнитных и звуковых волн в турбулентной среде и, наконец, рассматривается общая формулировка проблемы турбулентности, опирающаяся на изучение характеристических функционалов гидродинамических полей.  [c.34]

Математические проблемы существования и единственности решений уравнений в частных производных, описывающих течения жидкости, далеки от своего завершения как для самих дифференциальных уравнений, так и для их конечно-разностных аналогов. В 1961 г. появилась монография Ладыженской, посвященная этим проблемам для стационарного течения вязкой несжимаемой жидкости изложение существа ее работы дано Эймсом [1965]. Основываясь на сравнении задачи о течении несжимаемой жидкости, описываемом уравнениями Навье — Стокса, с другими задачами, Эймс (с. 480) предполагает, что единственное стационарное решение существует только ниже некоторого неизвестного предельного значения числа Рейнольдса, выше этого значения в некотором интервале чисел Re существует несколько решений и, наконец, выше некоторого другого, также неизвестного, значения числа Рейнольдса решений вообще не существует. (Однако Эймс также задается правомерным вопросом, справедливы ли сами стационарные уравнения Навье— Стокса для чисел Рейнольдса, превышающих некоторое значение, прп котором возникает турбулентность.) При конечно-разностном решении этой задачи положение может еще более усложняться из-за неясности граничных условий.  [c.24]


Применение центрированных компактных схем. Основной областью применения компактных схем четвертого порядка, не учитывающих направления распространения возмущений, оказались задачи о течении несжимаемой жидкости. При этом в большинстве случаев использовались уравнения Навье—Стокса в переменных вихрь -функция тока (31, 34] (см. также [1]). Основным лимитирующим фактором для этих схем являются малость сеточзюго числа Рейнольдса Яе = где и, и А — локальные значения скорости и шага сетки. Если это число не превосходит нескольких еди1шц, то самосопряженная часть разностного оператора компенсирует отрицательное воздействие его кососимметричиой части и сеточные решения не искажаются (или не сильно искажаются) схемной немонотонностью. Если оно мало или равно бесконечности (г =0),то применение центрированных алгоритмов, как будет показано ниже, может привести к неудаче.  [c.192]


Смотреть страницы где упоминается термин Уравнения Рейнольдса для несжимаемых жидкостей : [c.132]    [c.132]   
Смотреть главы в:

Механика жидкости  -> Уравнения Рейнольдса для несжимаемых жидкостей



ПОИСК



283 — Уравнения жидкости

Жидкость несжимаемая

Рейнольдс

Рейнольдса жидкость

Рейнольдса несжимаемой жидкости

Уравнение Рейнольдса

Уравнение несжимаемости

Уравнения Рейнольдса для развитого турбулентного движения несжимаемой жидкости



© 2025 Mash-xxl.info Реклама на сайте