Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентный пограничный слой несжимаемой жидкости

Это предположение подтверждается следующими экспериментальными фактами. Во-первых, профиль скорости в пограничном слое на стенках прямолинейных участков цилиндрических труб такой же, как и профиль скорости на плоской пластине, независимо от того, какое течение — ускоренное или замедленное — предшествовало течению около прямолинейного участка трубы. Во-вторых, профиль скорости над точкой отрыва в турбулентном пограничном слое несжимаемой жидкости не зависит от параметров течения во внешнем потоке до точки отрыва. Универсальность отрывного профиля нри различном характере течения до сечения отрыва также говорит о том, что можно пренебречь влиянием внешнего потока вне небольшой окрестности рассматриваемого сечения. Наконец, опыты но исследованию взаимодействия скачка уплотнения с пограничным слоем непосредственно показывают, что заметные изменения в пограничном слое происходят лишь на расстоянии, равном всего не скольким толщинам пограничного слоя. Следовательно, даже очень сильное изменение давления во внешнем потоке, вызванное скачком уплотнения, влияет на характер течения в пограничном слое впереди скачка уплотнения лишь в малой окрестности.  [c.332]


Теплообмен в турбулентном пограничном слое. Из аналогии Рейнольдса между теплообменом и трением в турбулентном пограничном слое несжимаемой жидкости получается зависимость  [c.689]

Формула (12.39) может быть названа законом распределения скоростей по синусу логарифма расстояния от стенки. При == = = 1 эта формула переходит в логарифмическую формулу для изотермического турбулентного пограничного слоя несжимаемой жидкости. В вязком.подслое  [c.255]

В гл. 7 были рассмотрены механизм турбулентного переноса импульса и развитие турбулентного пограничного слоя несжимаемой жидкости на продольно обтекаемой гладкой поверхности, а в гл. 9 — теплообмен при турбулентном течении в длинных каналах постоянного поперечного сечения. Для расчета теплоотдачи использовалась аналогия между переносом тепла и импульса в турбулентном потоке. В настоящей главе методы аналогии применяются для расчета теплообмена между гладкой поверхностью тела и турбулентным пограничным слоем. Эта задача отличается от внутренней только тем, что при течении в каналах пограничные слои на стенках развиваются независимо лишь до определенного сечения, в котором они смыкаются. Вниз ио потоку от этого сечения течение устанавливается, т. е. безразмер-ные профили скорости и температуры в сечении не изменяются ио длине канала. В этой главе нас интересует область, в которой пограничный слой на поверхности тела развивается. Предполагается, что пограничный слой достаточно тонкий и не взаимодействует с другими пограничными слоями.  [c.280]

РАСЧЕТ ТРЕНИЯ В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ НА ОСНОВЕ ИНТЕГРАЛЬНОГО УРАВНЕНИЯ КИНЕТИЧЕСКОЙ ЭНЕРГИИ  [c.308]

РАСЧЕТ ТЕПЛООБМЕНА В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ В ШИРОКОМ ДИАПАЗОНЕ  [c.431]

Рассмотрим плоский турбулентный пограничный слой несжимаемой жидкости при /=0. Тогда в области yi[c.16]

В 1-7 рассмотрены условия отрыва турбулентного пограничного слоя от поверхности при диффузорном течении и проанализировано влияние продольного градиента давления на устойчивость вязкого подслоя. Получим предельные формулы для параметров отрыва. Для сечения отрыва двумерного изотермического турбулентного пограничного слоя несжимаемой жидкости на непроницаемой стенке можно записать следующие условия  [c.89]

Интегральное соотношение импульсов для плоского турбулентного пограничного слоя несжимаемой жидкости на проницаемой пластине можно записать в виде (1-2-11)  [c.199]


Распределение скоростей в вязком подслое в точке отрыва турбулентного пограничного слоя несжимаемой жидкости от гладкой непроницаемой поверхности выражается формулой  [c.19]

ПРИБЛИЖЕННЫЕ МЕТОДЫ РАСЧЕТА ТРЕНИЯ И ТЕПЛООБМЕНА В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.400]

Представим коэффициент трения при турбулентном пограничном слое несжимаемой жидкости в виде степенной зависимости от числа Рейнольдса  [c.465]

К строению вязкого подслоя турбулентного пограничного слоя несжимаемой жидкости. Изв. АН СССР, сер. Механ. жидк. и газа, № 6, 157—163.  [c.640]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

Для турбулентного пограничного слоя несжимаемой жидкости экспериментально подтверждены логарифмический профиль скоростей и связанные с ним полуэмпирические теории турбулентности Прандт-ля — Кармана. При этом установлено, что логарифмический профиль скоростей мало чувствителен к продольному градиенту скорости невозмущенного потока при конфузорном течении, а также при диффу-зорном течении в области, удаленной от точки отрыва. Соответственно консервативны в этом смысле и зависимости i(l), на что указывалось в работе В. М. Иевлева [Л. 1]. Уравнения Рейнольдса, обобщенные на течение сжимаемого газа, позволяют. распространить на последний полуэмпирические теории турбулентности, так что в получающихся  [c.106]

Эти уравнения применяются для расчета ламинарного пограничного слоя. Уравнения для плоского турбулентного пограничного слоя несжимаемой жидкости при установившемся в среднем течении. могут быть получены из уравнений Рейнольдса путем оценки порядка величин, входящих в него, или непосредственно из уравнений (97). Для этого в уравнения (97) вместо мгновенного значения каждого параметра следует подставить сумму осредненных и пульсационных его составляющих и выполнить осреднение уравнений по правилам Рейнольдса [6]. В итоге для плоского турбулентного пограничногс слоя получают уравнения в следующем виде  [c.77]

РАСЧЕТ ТРЕНИЯ В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ ПО МЕТОДУ Д. А. СПЕНСА  [c.405]

На рис. 1 в полулогарифмических координатах приведены расчетные профили скорости в турбулентном пограничном слое несжимаемой жидкости без градиента давления при вариации числа Рейнольдса (кривые 1-4 соответствуют Кеб1 = 300, 540, 4700 и 10 , в - толщина потери импульса). Штриховая прямая - профиль, считающий лучшей аппроксимацией опытных данных (Стэнфорд-1990/91)  [c.445]

Влияние массообмена на коэффициент f. В этом пункте мы будем считать, что довольно сложные теории, описанные выше, дают хорошие результаты только при согласовании с экспериментом, и поэтому будет оправдано искать более прямой подход к задаче определения влияния массообмена на поверхностное трение в турбулентном пограничном слое. Далее, мы обратим внимание на наблюдаемый факт, что во внешней турбулентной части турбулентного пограничного слоя несжимаемой жидкости наклон кривой и в зависимости от log у нечувствителен к скорости вдува. Чтобы получить этот вывод, Лидон ), используя данные Микли и Девиса для Ме = 0, построил график зависимости и от log Мы используем этот наблюдаемый факт, чтобы показать, что касательное напряжение в турбулентной части пограничного слоя равно касательному напряжению при отсутствии массообмена, если никакая масса, входящая в пограничный слой на поверхности тела, не достигает той части турбулентного ядра пограничного слоя, которая обладает вышеуказанным свойством. Эти выводы, кроме того, могут быть использованы для получения влияния массообмена на поверхностное трение в турбулентном пограничном слое при малых скоростях массообмена.  [c.286]


Более трудную задачу представляет собой расчет неавтомодельных пограничных слоев, когда уравнения в частных производных можно проинтегрировать только численно. (Автомодельные решения могут служить хорошей проверкой для численных решений уравнений в частных производных.) Существует обширная литература по этому вопросу, на которой мы не будем останавливаться. Небольшой раздел отведен этому вопросу в книге Шлихтинга [1968]. Блоттнер [1970] дал обзор ссылок по расчету ламинарного пограничного слоя в несжимаемой и сжимаемой жидкости. Ламинарные сжимаемые пограничные слои обсуждаются также в работе Смита и Клаттера [1965]. Патан-кар и Сполдинг [19676] рассмотрели тепло- и массонередачу в турбулентных пограничных слоях несжимаемой жидкости. Для получения решений турбулентного пограничного слоя необходимо (1) выбрать модель турбулентности (или выбрать выражения либо для рейнольдсовых напряжений, либо для длины пути перемешивания Прандтля, либо для вихревой вязкости, или, в наиболее общем случае, записать уравнение для энергии турбулентного движения) (2) вблизи стенки применить локальное решение для течения Куэтта, что обусловлено большими изменениями величин касательных напряжений в турбулентном пограничном слое. В трудах Станфордской конференции (Клини и др. [1968]) приведен обзор работ в этой области по состоянию на 1968 г.  [c.451]


Смотреть страницы где упоминается термин Турбулентный пограничный слой несжимаемой жидкости : [c.330]    [c.214]    [c.18]    [c.93]    [c.135]    [c.176]    [c.363]    [c.17]    [c.86]    [c.688]    [c.734]    [c.221]    [c.258]    [c.432]    [c.377]    [c.608]    [c.110]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.688 ]



ПОИСК



Глава двенадцатая. Приближенные методы расчета трения и теплообмена в турбулентном пограничном слое несжимаемой жидкости

Жидкости Пограничный слой

Жидкости Пограничный слой турбулентный

Жидкость несжимаемая

М Боришанский, Е. Д. Федорович, Расчет теплообмена в турбулентном пограничном слое несжимаемой жидкости в широком диапазоне чисел Прандтля

Пограничный слой газа ламинарный жидкости несжимаемой турбулентный

Пограничный слой турбулентный

Пограничный турбулентный

Расчет трения в турбулентном пограничном слое несжимаемой жидкости в потоках

Расчет трения в турбулентном пограничном слое несжимаемой жидкости на основе интегрального уравнения кинетической энергии

Расчет трения в турбулентном пограничном слое несжимаемой жидкости по методу Д-. А. Спенса

Расчет трения в турбулентном пограничном слое несжимаемой жидкости по методу М. Р. Хэда

Слой турбулентный

Теплообмен в турбулентном пограничном слое несжимаемой жидкости

Турбулентность (см. Пограничный

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте