Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения в полных

Рассмотрим звено, описываемо( системой нелинейных дифференциальных уравнений в полных производных с переменными во времени параметрами  [c.70]

Дифференциальные уравнения в полных дифференциалах 208 —— в частных производных 224  [c.570]

Дифференциальные уравнения в полных дифференциалах 208  [c.549]

Далее будут рассматриваться замкнутые автоматические системы с одной или несколькими нелинейными характеристиками, которые описываются дифференциальными уравнениями в полных производных и на которые действует внешнее воздействие,  [c.100]


Прежде чем приступить к изложению метода расчета, рассмотрим определение статической линеаризации, поскольку в дальнейшем исследуемые нелинейные дифференциальные уравнения регулирования путем гармонической или статической линеаризации преобразовываются к виду линейных дифференциальных уравнений в полных производных с постоянными коэффициентами.  [c.101]

Решение линеаризованного дифференциального уравнения может быть формально произведено так же, как и линейного дифференциального уравнения в полных производных с постоянными коэффициентами.  [c.193]

При этих условиях, как это доказывается в курсах дифференциальных уравнений, если известно четыре первых интеграла, то пятый находится интегрированием обыкновенного дифференциального уравнения в полных дифференциалах. Пусть известно четыре первых интеграла  [c.404]

Дифференциальное уравнение для полного дифференциала термодинамической величины в функции измеримых свойств системы может быть получено следующим способом.  [c.150]

Свободная точка единичной массы движется в вертикальной плоскости ху под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби— Гамильтона и найти его полный интеграл (ось у направлена вертикально вверх).  [c.376]

Определение действия V по формуле (7.14) предполагает знание закона движения материальной системы. Поэтому нет ничего удивительного, что в формулах (7.15) мы так просто получили то, что предположили известным с самого начала. Чтобы обойти трудности определения действия V по формуле (7.14), Гамильтон нашел то дифференциальное уравнение в частных производных первого порядка, для которого действие V является полным интегралом.  [c.219]

Приведенный перечень параметров не является обязательным, его можно расширить, а некоторые из параметров заменить другими. Например, вместо динамического коэффициента вязкости можно ввести кинематический коэффициент v == р,/р. Геометрическими параметрами могут быть углы, определяющие конфигурацию границ или поля течения. Как правило, искомой исследуемой величиной является параметр второй группы, т. е. кинематическая или динамическая характеристика потока, которую нужно определить как функцию всех или части остальных параметров. Следует подчеркнуть, что составление полного перечня параметров, определяющих исследуемый процесс, является важной частью решения задачи методом размерностей. Оно упрощается, если процесс описан математически, в частности дифференциальными уравнениями в противном случае необходимо иметь четкое представление о физической сущности процесса, основанное на предварительном экспериментальном изучении. Для применения метода размерностей, как правило, необходима  [c.128]


Математическая модель с распределенными параметрами содержит переменные, зависящие от пространственных координат, и представляет собой систему дифференциальных уравнений в частных производных или систему интегро-дифференциальных уравнений. Важной характеристикой дифференциальных уравнений является их порядок, т. е. порядок старшей производной, которая входит в эти уравнения. Порядок производной по времени в большинстве динамических моделей процессов химической технологии — первый. Производные по координатам могут быть как первого, так и более высоких порядков. Модели обычно получаются в предположении о полном вытеснении (поршневом режиме течения) фаз. Производные второго порядка по координатам появляются в тех математических моделях, где учитывается перемешивание фаз.  [c.5]

Наиболее полные математические модели процессов теплообмена протекающих в различных технических устройствах, учитывают наличие неравномерных пространственно-временных полей у искомых величин — температур твердых тел и жидкостей, тепловых потоков, интенсивностей излучения и т. д. Такие модели представляют собой системы дифференциальных уравнений в частных производных, интегральных и интегродифференциальных уравнений. Однако при решении реальных технических задач, как правило, не ограничиваются использованием только таких моделей, что объясняется несколькими причинами.  [c.6]

Идею правила Рунге можно применять также для получения оценок погрешностей решений дифференциальных уравнений. В частности, на ее основе выводится приведенная в главе 1 формула (1.60) для полной погрешности численного решения обыкновенного дифференциального уравнения, в которой используются два численных решения, полученные на сетках разной густоты. При решении многих сложных задач такой путь оценки погрешности численного решения — единственно возможный.  [c.63]

После интегрирования этого дифференциального уравнения в пределах от/ij = Н до hi == 0 получаем время полного опорожнения бака  [c.86]

Зависимость функции W от старых координат qi определяется уравнением (9.20), которое является дифференциальным уравнением в частных производных и подобно уравнению Гамильтона — Якоби (9.3). Полный интеграл его опять будет содержать п независимых постоянных, одна из которых опять будет аддитивной. Остальные постоянные 2,. .., п могут вместе с 1 быть приняты за новые постоянные импульсы. Полагая в первой половине уравнений (9.21) / = О, мы можем связать п постоянных а с начальными значениями Qi и р,-. Наконец, разрешая равенства (9.22Ь) относительно qu мы можем получить их как функции at, Pi и t, чем и заканчивается решение задачи. Следует заметить, что при i ф 1 уравнения (9.22Ь) не содержат времени. Поэтому они позволяют выразить все координаты qi  [c.309]

В дальнейшем мы будем рассматривать только такие системы, гамильтониан которых является одним из первых интегралов (при этом он не обязательно должен быть полной энергией). Поэтому мы можем ограничиться рассмотрением лишь тех канонических преобразований, которые осуществляются функцией, определяемой соответствующим дифференциальным уравнением в частных производных. Разделение переменных, которое мы имеем в виду, удается произвести тогда, когда решение вида  [c.312]

Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]


Геометрическое решение уравнения в частных производных. Оптико-механическая аналогия Гамильтона. В наших предыдущих рассуждениях предполагалось, что у нас есть полное решение дифференциального уравнения в частных производных Гамильтона— Якоби. Предположим теперь гораздо меньшее, а именно что мы знаем лишь некоторое частное решение заданного уравнения в частных производных  [c.302]

Если судить по тому, как в прошлом параграфе была введена функция. S , можно было бы подумать, что для определения этой функции необходимо предварительно- разрешить рассматриваемую задачу. Но мы сейчас покажем, что эта функция удовлетворяет некоторому дифференциальному уравнению в частных производных первого порядка, каждый полный интеграл которого может заменить эту функцию при образовании интегралов механической задачи.  [c.558]

Таким образом, данная задача разрешена, ибо она сводится лишь к интегрированию двух уравнений с разделенными переменными между Ф и г шестью произвольными постоянными, необходимыми для полного интегрирования трех дифференциальных уравнений в переменных г, - и ф, будут i, h, D, Н я две постоянные, которые появятся в выражениях i и Ф в результате интегрирования.  [c.18]

Так как из какого-либо полного решения уравнения в частных производных первого порядка выводятся все остальные полные решения, теорема, которую я здесь сформулировал, дает также решение другой интересной задачи, а именно по некоторой данной системе элементов, которые связаны с временем в возмущенном движении системой дифференциальных уравнений в канонической форме, найти все другие системы элементов, которые обладают тем же свойством.  [c.292]

ЭТО построение есть точный эквивалент аналитического процесса, посредством которого в теории дифференциальных уравнений в частных производных первого порядка переходят от какого-либо полного решения к общему . [Оптика в том смысле, в каком мы ее здесь понимали, есть геометрическая оптика, которая имеет дело с понятием светового луча (следовательно, явления дифракции принципиально исключаются) и при применении обычных прямоугольных координат подчиняется дифференциальному уравнению в частных производных первого порядка второй степени  [c.514]

Однако ведь и задачи классической динамики могут быть сведены к дифференциальному уравнению в частных производных, а именно к уравнению Гамильтона. При этом множество решений подобной задачи вовсе не соответствует множеству решений у. Г. Любой полный интеграл у. Г. уже полностью решает механическую проблему, каждый другой полный интеграл приводит к тем же траекториям, множество которых лишь по-иному составлено.  [c.693]

Якоби указывает, что случай, когда одновременно имеют место закон живых сил и принцип наименьшего действия, очень важен <(Гамильтон заметил, что в этом случае задача может быть сведена к нелинейному дифференциальному уравнению в частных производных первого порядка. Если найдено одно его полное решение, то получаются все интегральные уравнения. Функцию, определенную этим дифференциальным уравнением, Гамильтон называет характеристической.  [c.826]

Соотношение между полным интегралом и двухточечной характеристической функцией тесно связано со следующим фактом. Полный интеграл дифференциального уравнения в частных производных  [c.253]

Запись системы дифференциальных уравнений движения и исключение множителей Лагранжа Л,-. Используя полученные выше коэффициенты а, и , и имея в виду полное число координат Я + /г = 5 + 2 = 7, записываем левую часть дифференциальных уравнений в форме (2.16), как в предыдущем примере. В правой части этих уравнений в соответствии с (2.20) помимо обобщенных сил Q,- стоит, сумма А h ,- +. .. Ч Л /г у.  [c.67]

Решая полученные к дифференциальных уравнений, найдем полную характеристику переходных процессов в рассматриваемой эквивалентной схеме машины.  [c.42]

Наиболее общие условия получаются из требования устойчивости по вероятности. Эта задача тесно связана с оценкой надежности. Самые полные сведения об устойчивости (одновременно и надежности) системы (6.2) по вероятности содержатся в уравнении (6.18). Однако современная теория систем дифференциальных уравнений в частных производных не дает возможности непосред-  [c.249]

Пример 1. Динамика химического реактора [4]. Рассмотрим модель химического реактора, который представляет собою открытую гомогенную систему полного перемешивания. В такой системе происходит непрерывный массо-и теплообмен с окружающей средой (открытая система), а химические реакции протекают в пределах одной фазы (гомогенность). Условие идеального перемешивания позволяет описывать все процессы при помощи дифференциальных уравнений в полных производных. Предположим, что рассматриваемый химический реактор — эго емкость, в которую непрерывно подается вещество А с концентрацией Хд и температурой г/ ). Пусть в результате химической реакции А В h Q образуется продукт В и выделяется тепло Q, а смесь продукта и реагента выводится из системы со скоростью, характеризуемой величиной X. Тепло, образующееся в результате реакции, отводится потоком вещества и посредством теплопередачи через стенку реактора. Условия теплопередачи характеризуются температурой стенки у и коэффициентом со. Для составления уравнений динамики химического реактора воспользуемся законами химической кинетики, выражающими зависимость скорости химического превращения от концентраций реагирующих веществ и от температуры, законом сслранения массы (условие материального баланса), а также законом сохранения энергии (условие теплового баланса реактора).  [c.53]


Таким образом мы получили дифференциальное уравнение в полных производных, структура которого аналогична уравнению математического маятника. Вид решения такого уравнения известен. Так как для нас интерес представляют лишь решения, имеющие импульсную форму, то Л(т1) должно исчезать при т1 оо, а также йа/йт] и d oldtf вследствие (8.77) и (8.79а). Из дискуссии по возникновению колебаний Раби и (8.79а) следует, что резонансная среда возвращается в исходное состояние, если а(оо)=т-2я (/п —целое число). Этим условием для площади импульса при т1 = оо и ее производной решение уравнения маятника определяется однозначно  [c.322]

Эта система четырех дифференциальных, уравнений в полных прочзвадных с четырьмя неизвестными функциями С,  [c.105]

Полученное дифференциальное уравнение Фурье описывает явления передачи теплоты теплопроводностью в самом общем виде. Для того чтобы применить его к конкретному случаю, необходимо знать распределение температур в теле в начальный момент времени или начальные условия. Кроме того, должны быть известны гео-метрическая форма и размеры тела, физические ларамехры-среды, и тела и граничные условия, характеризующие распределение температур на поверхности тела, или взаимодействие изучаемого тела с окружающей средой. Все эти частные особенности совместно с дифференциальным уравнением дают полное описание конкретного процесса теплопроводности и называются условиями однозначности, или краевыми условиями.  [c.355]

Решение дифференциального уравнения в частных п]ю-изводных, содержащее столько произвольных постоянных, сколько имеется независимых переменных, называется полным интегралом этого уравнения. Функция ) в уравнение (6.12) входит только 1ерез свои производные. Это значит, что одна произвольная постоянная будет входить в полный интеграл в виде слагаемого, т. е. полный интеграл уравнения Гамильтона — Якоби имеет вид  [c.155]

Аналоговые звенья описываются ди([)ференциальными уравнениями в полных или частных производных цифровые звенья - дифференциально-разностными уравнениями. Аналоговь е и цифровые звенья подразделяются на линейные и нелинейные в зависимости от того, линейны или нелинейны уравнения, применяемые для их описания. Как линейные, так и нелинейные звенья могут относиться к одному из следующих четырех классов  [c.69]

Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальпейи1ем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, по вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как. злектромагнитоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математической физики, В остальных главах книги (главы VI—VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется на примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации.  [c.2]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]


Смотреть страницы где упоминается термин Дифференциальные уравнения в полных : [c.70]    [c.481]    [c.322]    [c.444]    [c.184]    [c.265]    [c.278]    [c.280]    [c.139]    [c.167]    [c.20]    [c.295]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



Двадцатая лекция. Доказательство того, что интегральные уравнения, выведенные из полного решения Гамильтонова уравнения в частных производных, действительно удовлетворяют системе обыкновенных дифференциальных уравнений, уравнение Гамильтона для случаи свободного движения

Дифференциальное уравнение в частных производных в полных дифференциалах

Дифференциальные уравнения в полных в частных производных

Дифференциальные уравнения в полных вращения

Дифференциальные уравнения в полных высших порядков

Дифференциальные уравнения в полных дифференциалах

Дифференциальные уравнения в полных дифференциалах вращения

Дифференциальные уравнения в полных криволинейного движения

Дифференциальные уравнения в полных неоднородные

Дифференциальные уравнения в полных обыкновенные высших порядко

Дифференциальные уравнения в полных однородные

Дифференциальные уравнения в полных первого порядка 1 —• 208 — Система

Дифференциальные уравнения в полных первого порядка обыкновенны

Дифференциальные уравнения в полных прямолинейного движения точк

Дифференциальные уравнения в полных с разделенными переменным

Дифференциальные уравнения в полных теплопроводности

Дифференциальные уравнения в полных термодинамики

Дифференциальные уравнения для плотности инверсной заселенности . Полная система балансных уравнений в частных производных . Усредненные балансные уравнения (скоростные уравнения)

Линейные дифференциальные уравнения н многообразия полных флагов

Полная двумерная система дифференциальных уравнений теории оболочек

Уравнения дифференциальные для полных напряжений



© 2025 Mash-xxl.info Реклама на сайте