Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача граничная (краевая) динамическая

Перейдем теперь к формулировке основных динамических задач. Первая основная задача динамики (задача I) заключается в определении в заданной области В и промежутке времени смещений u(p,t) и напряжений Оц р,1), удовлетворяющих уравнениям движения (1.11) или (4.4 ) гл. II (в сочетании с уравнениями совместности деформаций в напряжениях (4.11) — (4.13) и (4.16) — (4.18) гл. II), а также граничным (краевым) )  [c.245]


Подставляя решение (7.138) в общее уравнение для прогиба (7.133), в начальные (7.134) и граничные (7.137) условия и учитывая квазистатический прогиб (7.139), получим замкнутую начально-краевую задачу для определения динамической части прогиба Wd- Дифференциальное уравнение в частных производных для его определения неоднородное  [c.431]

Подставляя решение (7.157) в общее уравнение для прогиба (7.152), в начальные (7.153) и граничные (7.156) условия и учитывая квазистатический прогиб (7.158), получим замкнутую начально-краевую задачу для определения динамической части прогиба Wd- В отличие от теплового удара уравнение для его  [c.438]

Подставляя решение (12.56) в обш,ее уравнение для прогиба (12.51), в начальные (12.52) и граничные (12.55) условия и учитывая квазистатический прогиб (12.57), получим замкнутую начально-краевую задачу для определепия динамической части прогиба Уравнение движения становится неоднородным  [c.293]

Подставляя решение (10) в обгцее уравнение для прогиба (8), в начальные и граничные условия (9) и учитывая квазистатический прогиб (11), получим замкнутую начально-краевую задачу для определения динамической части прогиба  [c.101]

Построение ПД с учетом динамики робота сводится к решению двухточечной краевой задачи с граничными условиями (2.43) и ограничениями (2.44)—(2.46). Многие известные методы решения краевых задач здесь малоэффективны или даже непригодны. Трудности усугубляются высокой размерностью и нелинейностью уравнений динамики (2.2), а также сложным характером ограничений (2.44)—(2.46). Эффективным методом динамического синтеза ПД является метод параметризации ПД с учетом граничных условий (2.43), накладываемых на начальное и конечное состояния робота [107, ИЗ], В этом методе воплощена идея априорного выполнения граничных условий (2.43) и учета структурного ограничения (2.46). Это достигается за счет специального выбора базисных функций. В таком подходе заложен глубокий смысл при отыскании приемлемых параметров ПД уже не нужно за-  [c.52]

Представляют теоретический и прикладной, в частности в сейсмологии, интерес динамические задачи, когда в фиксированный момент времени известно состояние среды, т. е. начальные условия не-нулевые или неоднородны. Так как будем рассматривать линейные задачи, то при решении частных задач краевые условия будем принимать нулевыми. Если наряду с начальными условиями задаются и ненулевые граничные условия, то решение задачи нетрудно полу-  [c.166]


При формулировке конкретных динамических задач термовязкоупругости необходимо задать соответствующие начальные и граничные условия, которые в совокупности с уравнениями законов сохранения движения и энергии, а также с (4.2.42) и (4.2.43) образуют полную систему соотношений рассматриваемой линейной начально-краевой задачи.  [c.188]

Предварительные замечания. Под упругими системами с распределенными параметрами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы, их динамическое поведение выражают дифференциальными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется задавать краевые (граничные) условия.  [c.329]

Рассмотрены ламинарные течения вязкой несжимаемой жидкости и теплообмен в каналах при произвольном малом отклонении их поверхности от цилиндрической. Приведена линейная система уравнений и граничных условий для возмущенных динамических и тепловых полей, полученная путем линеаризации полной системы уравнений Навье-Стокса около решения для развитых течений в цилиндрических трубах произвольного сечения. Для практически важного случая, когда возмущения поверхности каналов сосредоточены на участке конечной длины, показано, что интегральные динамические и тепловые характеристики каналов находятся без решения трехмерных уравнений путем перехода к эффективным двумерным краевым задачам, сложность решения которых не выше, чем для развитых течений. Дано обобщение развитой теории на течения с силовыми источниками малой эффективности. Рассмотрены приложения к плоским каналам и круглым трубам с возмущенными поверхностями.  [c.374]

Наиболее часто встречаемой краевой задачей для осесимметричных течений является движение тела вращения в бесконечной жидкости с постоянной скоростью и = параллельной его оси вращения. Граничные условия па теле делятся па два типа кинематические и динамические.  [c.131]

Следует отметить также предложенное в работах [213, 95, 96] расчленение общей моментной краевой задачи на основную (обычно безмоментную) со своими граничными условиями и простой краевой эффект. В дальнейшем этот результат был обобщен на динамические задачи [7, 188].  [c.9]

Требуется определить оптимальный закон изменения f t) и направления e t) вектора реактивного ускорения. Вариационная задача (26) сформулирована как динамическая вариационная задача Лагранжа с дифференциальными связями и краевыми условиями на местоположение и скорость. При отсутствии граничных управлений можно для решения задачи (26) применить аппарат вариационного исчисления.  [c.533]

В этих задачах требуется определение упругого состояния (статического, колебательного или динамического), соответствующего данной массовой силе по краевым условиям (граничные условия в задачах статики и колебания и гранично-начальные условия в задачах динамики). Но эти данные (массовая сила и краевые условия) в технических задачах определяются с помощью измерения и содержат некоторую погрешность. В связи с этим с некоторой погрешностью определяется и упругое состояние.  [c.275]

Как было отмечено, существует несколько. кинетических моделей, описывающих взаимодействие между дислокациями и примесными атомами. Однако все они имеют много упрощений. Точного аналитического решения задачи для диффузионного и дрейфового потока примесных атомов к дислокациям в реальных граничных условиях до сих пор не получено не только для динамического деформационного старения, но и для более простых случаев термического старения и статического деформационного старения [И, с. 161]. Н. М. Власов и Б. Я. Любое [11, с. 193] в результате рассмотрения кинетики образования атмосфер примесных атомов вокруг скопления краевых дислокаций в плоскости скольжения указывают, что диффузионное уравнение решается в приближении слабого взаимодействия, т. е. когда дрейф атомов примеси в поле напряжений скопления краевых дислокаций считается малым возмущением. Отмечено, что аналитическое решение задачи вне рамок приближения слабого взаимодействия, т. е. в реальных граничных условиях, связано с большими математическими трудностями. Наиболее вероятной моделью применительно к динамическому деформационному старению является,  [c.240]


Если вариационные постановки для основных краевых задач математической физики и теории упругости известны давно, то для задач с односторонними ограничениями сформулированы только в последнее время. Одной из первых на эту тему является работа [379], в которой показано, что контактная задача теории упругости с односторонними ограничениями (задача Синьорини) сводится к вариационному неравенству. В дальнейшем вариационные неравенства и их приложения в механике и физике рассматривались в [26, 71, 85, 115, 167, 216, 283, 376, 381, 486 и др.]. В частности, статические и динамические контактные задачи теории упругости с трением вариационными методами рассматривались в работах [185—189, 326], контактные задачи для тел с трещинами — в [34, 75, 86, 164, 165, 175, 271, 365, 575], линейные и нелинейные контактные задачи теории оболочек — в [229, 310], а граничные вариационные неравенства применительно к решению контактных задач — в [138, 366—368, 432, 510, 534, 540]. Алгоритмы решения вариационных задач с ограничениями в виде неравенств, их теоретическое обоснование и вопросы численной реализации рассмотрены в [72, 111, 338, 420, 475 и др.]. Подробный обзор работ по применению вариационных неравенств в задачах механики твердого деформируемого тела дан в [365].  [c.82]

Таким образом, даны три эквивалентные математические формулировки динамических контактных задач с односторонними ограничениями для упругих тел с трещинами. Первая свелась к начально краевой задаче (3.1) — (3.3) с односторонними ограничениями, вторая вариационная заключается в нахождении седловой точки граничного функционала (4.56) на множествах допустимых вариаций (4.55) и (4.57), третья предполагает выполнение прямого и обратного преобразования Лапласа и решение бесконечного множества систем граничных интегральных уравнений (5.81) с учетом односторонних ограничений  [c.131]

Как известно (см. раздел Д.1), динамическая задача теории упругости сводится к начально-краевой задаче для уравнений движения в перемещениях (Д.4). Применяя преобразование Лапласа (Д.38) к уравнениям движения, граничным и начальным условиям, вместо одной начально-краевой задачи для нестационарной системы уравнений (Д.4) получим бесконечное множество краевых задач для стационарной системы  [c.206]

В системе (11.3) в отличие от (7.1), перемещения являются функциями не только координат, но и времени. В соответствии с этим при формулировке задач динамической теории упругости надо, помимо граничных условий, ставить еще и начальные условия, т. е. необходимо иметь заданными в некоторый момент времени t = tQ значения перемещений и, г/, да и скоростей и, V, да во всех точках тела. Что касается граничных условий, то они в динамических задачах формулируются аналогично статическим задачам (т. е. путем задания в каждой точке поверхности тела трех условий, сформулированных либо непосредственно в перемещениях, либо в форме задания компонентов внешних поверхностных сил). Разница состоит лишь в том, что в динамических задачах краевые значения перемещений или внешних сил могут зависеть не только от положения точки на поверхности тела, но и от времени.  [c.200]

Рассмотренная выше задача о статистической параметрической раскачке динамической системы за счет флуктуаций параметров могла быть описана как в приближении дельта-коррелированности случайного процесса г ( ), так и для процессов с конечным радиусом корреляции благодаря тому факту, что начальные условия задавались в одной точке, т. е. выполнялась динамическая при- чинность. Если же граничные условия задаются в разных точках, то для соответствующей задачи не будет выполняться условие причинности. В этом случае надо воспользоваться теорией инвариантного погружения, позволяющей свести краевую задачу к задаче Коши. В следующей главе мы и рассмотрим пример такой задачи — волну в одномерной случайно-неоднородной среде.  [c.192]

Краевая задача для моделирования развитой динамической деформации и разрушения металлов включает решение классических уравнений механики деформируемого твердого тела (динамических и кинематических уравнений, а также определяющих соотношений), дополненных неклассическими соотношениями, описывающими процесс разрушения металла. Предлагается приближенное решение указанной краевой задачи в два этапа. На первом этапе для произвольного и фиксированного момента времени применяются изохронные вариационные принципы и прямые методы вариационного исчисления. Находятся с точностью до варьируемых параметров поля скоростей течения, напряжений и температур. На втором этапе решается система обыкновенных дифференциальных уравнений относительно варьируемых параметров. Процесс решения выполняется до момента образования макротрещины. Решение возобновляется после введения новых граничных условий на поверхностях трещины. Обоснованность этого метода приближенного решения установлена соответствующими теоремами. При решении подразумевается лагранжево представление о движении.  [c.4]

При выводе уравнения (XIV.50) использованы дифференциальные уравнения движения, уравнение неразрывности, связи между скоростями деформаций и скоростями перемещений, начальные условия, кинематические и динамические граничные условия, включая условия трения, а также уравнения состояния. Методами вариационного исчисления можно показать, что из уравнения (XIV.50) следует краевая задача теории пластичности. Действительно, осуществим варьирование в уравнении (XIV.50), учитывая все ограничения, накладываемые на вариации, и приведем его к независимым вариациям. После этого на основании основной леммы вариационного исчисления можно получить все уравнения и условия, перечисленные выше. Таким образом, решение краевой задачи в дифференциальной форме эквивалентно исследованию на стационарное состояние функционала I, заклю ченногов фигурные скобки в (XIV.50).  [c.315]


Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Для иллюстрации метода граничных элементов рассматривалась задача об ударном разрыве пластины с краевой трещиной. Схема дискретизации границы симметричной части пластины показана на рис. 3.11. Для определения зависимости коэффициента интенсивности напряжений от времени были вычислены обращения преобразования Лапласа вертикальных смещений на продолжении трещины, затем методом экстраполяции были получены результаты, представленные на рис. 3.12. Эти результать согласуются с известными аналитическими и численными результатами (см. гл. 2), а также [28]. При этом необходимо отметить следующее. Согласно аналитическому решению, пиковое значение динамического коэффициента интенсивности напряжений достигается в момент прихода в вершину трещины волн Рэлея, и производная по времени в этот момент терпит разрьш. Приведенные на рис. 3.12 к 1вые являются сглаженными вследствие дискретизации интегрального уравнения и численного обращения преобразования Лаш1аса. Тем не менее, зто не сказывается на самом пиковом значении 1, которое является наиболее важной величиной, определяемой в процессе расчета.  [c.74]

Отмеченное выше совпадение формы записи динамических вязкоупругих потенциалов и динамических упругих потенциалов и тождественность их граничных свойств избавляют от необходимости записывать соответствующие ГВИУ. Достаточно обратиться к 5 главы 3. Заметим, что свойства однозначной разрешимости основных краевых и начально-краевых задач при переходе от упругой к вязкоупругой динамике полностью сохраняются, причем в тех же классах функций.  [c.175]

В настоящее время существует несколько кинетических моделей, описывающих взаимодействие между дислокациями и примесными атомами, однако все они срдержат много упрощений. Точного аналитического решения задачи для диффузионного и дрейфового потока примесных атомов к дислокациям в реальных граничных условиях до сих пор не получено не только для динамического деформационного старения, но и для более простых случаев-термического и статического деформационного старения. Наиболее вероятной моделью применительно к динамическому деформационному старению является, по-видимому, дрейфовая модель Коттрелла — Харпера. Согласно этой модели [10], доля растворенных атомов, сегрегирующих на краевой дислокации, пропорциональна времени в степени Располагая экспериментальными данными о температуре динамического деформационного старения, по уравнению Коттрелла — Харпера при прочих равных условиях можно оценить или плотность дислокаций, или коэффициенты диффузии примесных атомов, или время протекания процесса [111 следующим образом  [c.6]

Совершенно иные возможности при исследовании динамических задач, в том числе и контактных для анизотропных тел, открылись с использованием техники граничных интегральных уравнений (ГИУ) и развитием методов их численного исследования. Метод граничных интегральных уравнений стал одним из наиболее эффективных средств анализа динамических контактных задач для ограниченных и полуограниченных анизотропных тел. Он позволяет снизить размерность исследуемых краевых задач на единицу [5, 24]. Главным препятствием на пути интенсивного использования этого подхода при решении контактных задач является отсутствие явного представления фундаментальных и сингуляр-  [c.304]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

Развитию основ теории и решению конкретных классических динамических задач термовязкоупругости посвящены монографии А. А. Ильюшина и Б. Е. Победри [12], В. Новацкого [421. Ниже приводятся основные соотношения и уравнения термовязкоупругости для массивных тел и тонких пластинок и на основе обобщенной теории термовязкоупругости изучаются динамические температурные напряжения в изотропном полупространстве при заданном на краевой поверхности тепловом потоке и в полубесконечной пластинке [241 при заданной температуре краевой поверхности. Предполагается, что тепловой поток на краевой поверхности полупространства и граничное значение температуры пластинки изменяются в начальный момент времени на некоторую величину, оставаясь далее постоянными. Исследуется влияние тепловой инерции на распределение в них динамических температурных напряжений.  [c.292]


Неизвестные функции этой системы — концентрация дырок и электронов р(х, у, z, t) и п х, у, z, t) и напряженность электрического поля Е(х, у, Z, t). Вместо Е может фигурировать электрический потенциал ф(д , у, z, t), так как Е=—gradf. Краевые условия состоят из начальных условий, характеризующих распределение зависимых переменных по объему кристалла в начальный момент времени, и граничных, задающих значения зависимых переменных на границах рассматриваемой полупроводниковой области. Геометрические размеры и конфигурация диффузионных областей и омических контактов транзистора также учитываются граничными условиями. Параметрами этой модели являются основные электрофизические параметры полупроводника. Дифференциальные уравнения в частных производных можно решать методами конечных разностей либо конечных элементов. С помощью физико-топологической модели можно с высокой степенью точности определить основные статические и динамические характеристики транзистора. Модель не учитывает влияния магнитного поля и возможных неоднородностей полупроводникового материала, что несущественно для моделирования реальных транзисторов, так как большее значение имеет точное определение параметров модели. Применение подобных моделей транзистора в задачах анализа электронных схем практически нереализуемо. Они применяются только для идентификации параметров более простых схемных моделей транзистора.  [c.132]

В работах, посвяш.енных указанной динамической задаче, основным лредположением является постоянство, т. е. независимость от времени области задания краевых условий. При таком предположении рассмотрена задача Лэмба в работе В. А. Свекло [83], когда на части границы полуплоскости, где л >0, отсутствуют напряжения, а на остальной ее части равны нулю нормальные к границе перемещения точек среды и касательные напряжения, что соответствует условию прилипания без трения к полубесконечному штампу. Касательный мгновенный импульс приложен в точке 1раздела граничных условий.  [c.316]

Эти формулы являются исходными при составлении граничных интегральных уравнений для различных начально краевых задач динамической теории упругости и, в частности, для тел, содержащих трещины и разрезы. Для вывода граничных интегральных уравнений изучаемых задач необходимо знат1, граничные свойства потенциалов динамической теории упругости в пространстве преобразований Лапласа (5.4) на границе тела и на трещине. Прежде чем перейти к их изучению найдем формулы для фундаментальных решений динамической теории упругости в пространстве преобразований Лапласа.  [c.108]

В динамике пластин метод степенных рядов применял И. Т. Селезов [2.50] (1960). Он исходил из краевой задачи динамической теории упругости в перемешениях и рассматривал систему рекуррентных соотношений типа (20.9) и (20.10) и уравнения типа (20.11), вытекающие из граничных условий, как общую бесконечную систему дифференциальных уравнений, эквивалентную исходной краевой задаче (это справедливо при условии равномерной сходимости рядов). В дальнейшем требуется введение каких-либо ограничений, что можно сделать различным путем. Поэтому методом степенных рядов можно получить бесконечное множество аппроксимаций. Цель состояла в построении гиперболических аппроксимаций. Было показано, что при усечении системы до какого-либо порядка получается замкнутая система уравнений, которая может быть приведена к нескольким или одному дифференциальным уравнениям более высокого порядка. Если при этом сохранить все пространственно-временные дифференциальные операторы до определенного порядка включительно [2.52] (1961), то полученная система уравнений будет гиперболической. Это условие является достаточным для построения гиперболических аппроксимаций. Приведем краткое изложение этих результатов. Рассмотрим упругое поле, характеризуемое пространственными ортогональными координатами Хи Х2, Хз и временной координатой t. Причем ось Охз является прямой, а криволинейные ортогональные координаты Х и Х2 отсчитываются в плоскости Хз = 0. Выделим слой —оо<х1<°о, —оэ<х2<оэ, —к<Хз<к и положим, что изменение поля в зависимости от координат и Х2 характеризуется некоторым параметром I, который значительно больше толщины слоя 2к  [c.137]


Смотреть страницы где упоминается термин Задача граничная (краевая) динамическая : [c.2]    [c.101]    [c.294]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.119 ]



ПОИСК



I краевые

Задача граничная (краевая)

Задача краевая

Задачи динамические



© 2025 Mash-xxl.info Реклама на сайте