Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость слоистых оболочек

Рассматриваемое направление в механике многослойных оболочек широко представлено в уже цитированных публикациях. Особо отметим обстоятельный обзор Э.И. Григолюка и Г.М. Куликова [110],в котором даны классификация используемых гипотез и критический анализ работ именно этого (общего, по мнению авторов обзора) направления. Материалы Э.И. Григолюка и Г.М. Куликова позволяют не останавливаться на обсуждении конкретных вариантов уравнений слоистых пластин и оболочек, относящихся к рассматриваемому направлению. Большее внимание в настоящей монографии будет уделено лишь одному из таких вариантов, основанному на кинематической модели ломаной линии и получившему (см. [52, 111, 115] и др.) широкую известность и признание — соответствующая система дифференциальных уравнений статики и устойчивости слоистых оболочек сформулирована в параграфе 3.7. Эта система используется при сравнительном анализе результатов расчета слоистых оболочек с привлечением различных уточненных моделей их деформирования.  [c.8]


Из (3.1.6) ясно, что в развиваемом варианте теории многослойных оболочек уточнение классической теории связано с учетом поперечных сдвиговых деформаций, в то время как обжатие нормали в нем не учитывается. Обосновывая избранное направление уточнения, укажем на работы [13, 14, 257—260, 262], в которых, в частности, рассматривается вопрос о погрешности в определении характеристик напряженно-деформированного состояния и критических параметров устойчивости слоистых оболочек, вносимой неучетом обжатия нормали. По результатам этих и других исследований можно сделать вывод о том, что за исключением некоторых особых случаев — очень толстые оболочки, сосредоточенные нагрузки и т.д., — основной вклад в уточнение вносит учет поперечных сдвиговых деформаций, тогда как влияние обжатия нормали невелико и им допустимо пренебречь..  [c.40]

Уже из краткого рассмотрения ясно, что вопросы численного анализа краевых задач уточненной теории оболочек разработаны недостаточно полно. Создание и развитие численных методов их решения остаются важной и актуальной задачей, требующей внимания ученых и специалистов. Этой проблеме посвящена гл. 7, в которой развит эффективный метод численного интегрирования линейных осесимметричных краевых задач статики и задач устойчивости слоистых оболочек вращения, основанный на идее инвариантного погружения.  [c.110]

Андреев А.Н. Численное определение матрицы Грина линеаризованных краевых задач изгиба и устойчивости слоистых оболочек вращения методом инвариантного погружения // Динамика сплошной среды Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. — П., 1990. — Вып. 98. — С. 3—22.  [c.275]

УСТОЙЧИВОСТЬ СЛОИСТЫХ ОБОЛОЧЕК И ПЛАСТИН ЗА ПРЕДЕЛОМ ПРОПОРЦИОНАЛЬНОСТИ  [c.109]

КОЛЕБАНИЯ И УСТОЙЧИВОСТЬ СЛОИСТЫХ ОБОЛОЧЕК [ГЛ, Ш  [c.410]

Эта глава посвящена оболочкам из композиционных материалов, причем основное внимание уделено построению различных вариантов теории тонких слоистых оболочек и их применению к задачам статики, динамики, устойчивости и термоупругости оболочек различных форм, а также их уточнению или формулировке других теорий, позволяющих учесть большие прогибы оболочек, трансверсальные эффекты и рассмотреть трехслойные конструкции.  [c.251]

В гл. 5 получены разрешающее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки относительно прогиба выпучивания с произвольным строением пакета по толщине и расчетные формулы для определения критических усилий при различных видах нагружения, в частности, в оболочках, изготовленных прямой, однозаходной, перекрестной и изотропной намотками. Сформулирована задача поиска оптимальных параметров неравномерно нагретых по толщине многослойных цилиндрических оболочек. Для случая, когда активным является ограничение по устойчивости, оценено влияние схемы армирования на критические параметры нагрузки и волнообразования. Эти исследования расширяют представление о роли проектных параметров оболочечных конструкций, оцениваемых по моделям В. И. Королева и С. А. Амбарцумяна.  [c.8]


Рассмотрены задачи выбора оптимальной намотки тонкостенных цилиндрических оболочек, теряющих устойчивость при кручении, при нормальном равномерно распределенном давлении, при осевом сжатии, при совместном действии осевого сжатия и давления и при совместном действии кручения и внешнего давления. Получены расчетные формулы для определения критических усилий в оболочках, изготовленных различными видами намотки, исходя из разрешающего дифференциального уравнения устойчивости слоистой цилиндрической оболочки для общего случая анизотропии материала, когда его оси не совпадают с главными линиями кривизны оболочки. Изучены виды намотки прямая, косая, перекрестная, изотропная. Проведено сравнение с результатами, полученными по приближенным формулам.  [c.197]

Конец 60-х — первая половина 70-х гг. характеризуются широким внедрением в практику ОПК хорошо разработанных к этому времени методов математического программирования (МП), существенно расширивших возможности постановки и решения более сложных задач оптимизации конструкций из композитов. Применение методов МП как средства эффективного решения многомерных задач оптимизации позволило качественно изменить содержание задач ОПК из композитов на основе включения в число параметров оптимизации одновременно геометрических параметров конструкции и структурных параметров конструкционного материала. Возникшая при этом потребность в уточнении моделей расчета конструкций, прежде всего слоистых оболочек, стимулировала развитие соответствующих разделов механики конструкций [8, 15, 118 и др.]. В свою очередь, потребность в моделировании деформативных и прочностных характеристик композитов с усложненными свойствами и структурой армирования обусловила устойчивый интерес и, следовательно, быстрое развитие структурной механики композита [15, 25, 54, 63, 75, 105, 127 и др.]. Распространение принципа усреднения на методы расчета деформативных характеристик поли-  [c.11]

Весьма плодотворным объектом оптимизации в рамках упомянутого класса задач в рассматриваемый период становятся слоистые оболочки, армированные в нескольких (обычно в 3—4) направлениях. В качестве целевой функции проектов на первый план выдвигается показатель экономичности — масса оболочки. Требования к функциональным характеристикам конструкции (критические нагрузки потери устойчивости, частоты собственных колебаний, жесткость, прочность и т. п.) учитываются, как правило, в форме ограничений на проект.  [c.12]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]


В настоящей монографии сравнительному анализу результатов расчета слоистых оболочек и пластин на прочность и устойчивость уделяется значительное внимание. Результаты расчета напряженно-деформированного состояния и критических параметров устойчивости, определенные на основе установленных в параграфах 3.1—3.6 уравнений, сравниваются с результатами, полученными на основе уравнений классической теории, уравнений типа С.П. Тимошенко [43, 118, 121, 226, 265 и др. 1, уравнений, основанных на кинематической модели  [c.81]

Указанные замкнутые системы линеаризованных уравнений статики и устойчивости слоистых упругих тонких пологих (1 + h/R 1) оболочек ниже составлены в системе координат, связанной с линиями кривизны отсчетной поверхности Q. Сведения о вариантах уравнений представлены лишь в том минимальном объеме, в каком они используются в дальнейшем. С полным изложением этих вопросов, включающим в себя уравнения динамики, уравнения нелинейной теории и др., заинтересованный читатель может ознакомиться по цитированным источникам.  [c.82]

Из табл. 6.4.2 видно, что учет влияния неоднородности распределения до-критических усилий в отсчетной поверхности оболочки приводит к некоторому снижению расчетных значений критического давления при R/1 < 1 и к ее существенному повышению при R/1 > 1. Так, при R/1 = 3 критическое давление Р более чем в 3 раза превышает критическое давление Р, что свидетельствует о принципиальной необходимости учета этого фактора при расчете устойчивости коротких слоистых оболочек. Отметим, что аналогичный результат установлен в работах [60, 64], в которых соответствующий анализ выполнен в рамках гипотезы ломаной линии. Отметим также, что в рассмотренном примере число окружных волн п возрастает при увеличении параметра R/1 от 2 при R/1 — 0,125 до 17 при R/1 = 3.  [c.193]

МЕТОДЫ ИНВАРИАНТНОГО ПОГРУЖЕНИЯ В ЗАДАЧАХ СТАТИКИ, УСТОЙЧИВОСТИ И ДИНАМИКИ СЛОИСТЫХ ОБОЛОЧЕК ВРАЩЕНИЯ  [c.195]

В ходе расчетов, выполненных [17—19, 21, 23, 24, 30] для слоистых оболочек вращения важных частных классов (цилиндрических, конических и др.) с использованием разработанных в настоящей монографии неклассических уравнений, выявлено, что спектральный радиус матрицы Якоби правой части системы дифференциальных уравнений (7.2.21), (7.2.28) и спектральный радиус матрицы коэффициентов первоначальной системы уравнений изгиба — величины одного порядка. Спектр матрицы Якоби характеризуется большим разбросом и, что существенно, весь лежит в левой комплексной полуплоскости. Такие системы дифференциальных уравнений относятся к классу жестких (в смысле определения [131, 256, 283]). Их устойчивое численное решение классическими явными методами Рунге — Кутта, Адамса и др. [41] возможно лишь при существенном ограничении на шаг интегрирования h  [c.203]

Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

О численном интегрировании линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения  [c.205]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]

Задача (7.3.12) — краевая задача неклассической теории оболочек, и ее интегрирование требует применения экономичных и эффективных численных методов, учитывающих существенные особенности таких задач — матричную структуру решения и сильную численную неустойчивость неклассических дифференциальных уравнений слоистых оболочек. Этим требованиям в полной мере отвечает разработанный в предыдущем разделе метод инвариантного погружения в его обобщенной форме. Накопленный вычислительный опыт [17—19, 21, 23, 24, 30] позволяет рекомендовать эту модификацию метода к широкому использованию в задачах прочности, устойчивости, динамики оболочек.  [c.208]

Разработанный здесь метод численного определения матричной функции Грина обладает рядом достоинств, позволяющих рекомендовать его к широкому практическому использованию. В нем эффективно преодолевается сильная численная неустойчивость дифференциальных уравнений неклассической теории слоистых оболочек не вызывает никаких затруднений также и переменность коэффициентов этих уравнений. Сам метод матричной функции Грина как метод решения краевых задач механики оболочек имеет известные преимущества перед другими. Так, в нем не возникает проблем, связанных с построением ортогонального координатного базиса, как в методе Бубнова — Галеркина, или с большой размерностью, а часто и плохой обусловленностью алгебраической системы, как в методе конечных разностей. В задачах устойчивости оболочек использование данного метода позволяет легко и естественно учесть такие факторы, как до-критические деформации, неоднородность распределения докритических усилий в отсчетной поверхности оболочки, краевые условия задачи. В то же время число точек разбиения отрезка интегрирования, необходимое для аппроксимации интегрального оператора, относительно невелико, что приводит к алгебраической задаче невысокой размерности.  [c.222]


Устойчивость слоистой композитной конической оболочки при равномерном внешнем давлении  [c.255]

Уравнения статической устойчивости слоистой упругой ортотропной конической оболочки получим из общих уравнений, составленных в параграфе 3.5. Вновь используем систему координат s, и считаем, что структура армирования слоев не зависит от угловой координаты, а направления осей ортотропии совпадают с направлениями координатных осей. Полагаем также, что оболочка достаточно тонкая, и пренебрегаем во всех уравнениях величинами порядка h/R по сравнению с единицей. Замкнутая система уравнений статической задачи устойчивости включает в себя следующие группы зависимостей (к = 1,2,...,тп — порядковый номер слоя знаком тильды отмечены характеристики основного состояния)  [c.255]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Численные методы расчета на устойчивость ортотропных слоистых (при симметричном расположении слоев) оболочек вращения при осесимметричном нагружении приведены в работах Сеиде [251], Алмрота и др. [7], Мяченкова [1951 Кохен [68] исследовал влияние осесимметричных начальных несовершенств на устойчивость таких оболочек.  [c.227]

Влияние сдвиговой податливости материала при сдвиге по толщине на устойчивость слоистых цилиндрических панелей исследовалось в работе Дурфлофски и Майерса [86], задачи устойчивости и колебаний замкнутых слоистых цилиндрических оболочек рассматривались Тейлором и Майерсом [280].  [c.245]

Результаты эксперимента сравнивались с расчетом. Критическое внешнее давление определялось из уравнений устойчивости (см. гл. 2), полученных для конической ортотропной оболочки, неоднородной по тол1Щ1не. В случае слоистой оболочки формулы для жестокостей имеют вид  [c.363]

Дальнейщее изложение вопросов, связанных с постановкой и методами решения задач оптимизации несущих конструкций, будем строить для класса задач оптимизации пространственно илн двумерно армированных слоистых оболочек, работающих на устойчивость (примеры их решения составляют основное содержание заключительных глав монографии).  [c.175]

Нарусберг В. Л. О структурных уравнениях рационально армированных слоистых оболочек, работающих на устойчивость // Механика конструкций из композиционных материалов. — Новосибирск Наука, СО, 1984. — С. 186—189.  [c.273]

История вопроса, насыщенная дискуссиями и порой драматическая, восходит, конечно, к классическим трудам Л. Эйлера [331 ] о выпучивании упругих сжатых стержней. В фундаментальных монографиях и обзорных работах [4, 46, 51, 52, 60, 85, 103, 104, 116, 130, 134, 189, 194, 204, 206, 222, 240,265, 300, 311, 321] можно найти сведения об эвлюции взглядов на проблему устойчивости, обсуждение различных подходов к постановке задачи — статического, энергетического, метода неидеальностей, динамического метода и областей их применимости, сопоставление экспериментальных и расчетных теоретических результатов, обсуждение путей дальнейшего развития теории и т.д. Следует отметить, что большинство глубоких результатов в задаче устойчивости относится к однородным изотропным оболочкам и получено в рамках гипотезы недеформируемых нормалей. Несмотря на значительные достижения [52, 60, 117, 265 и др. ], задача устойчивости слоистых анизотропных композитных оболочек с ограниченной поперечной сдвиговой жесткостью разработана с меньшей полнотой и требует дальнейших исследований.  [c.59]

Итак, установлена замкнутая система линейных однородных уравнений устойчивости слоистых композитных оболочек. Записанная в вариациях обобщенных перемещений система состоит из пяти дифференциальных уравнений в частных производных с двумя независимыми переменными j S относительно пяти искомых функций и , и . И", TTj. Ее порядок от числа слоев оболочки не зависит и равен 12, что соответствует количеству задаваемых для нее краевых условий (3.3.6). Зависимость коффициентов этих уравнений от параметра внешних нагрузок проявляется через характеристики основного состояния (перемещения, деформации, усилия) и в общем случае нелинейна. Задача заключается в определении таких значений этого параметра, при которых линейная однородная система уравнений устойчивости, подчиненная надлежащим однородным краевым условиям, допускает нетривиальное решение. Этими значениями параметра нагрузок определяются критические точки, которые, согласно существующей классификации [45, 51 ], могут быть двух типов — точки бифуркации и предельные точки. При переходе через точку бифуркации может теряться устойчивость по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной равновесой формы к другой [45, 51 ].  [c.61]

Зависимости (2.1.1), (3.2.8), (3.3.4), (3.3.7), (3.3.8) составляют полную систему уравнений задачи устойчивости, составленную для того случая, когда пренебрега-ется как нелинейностью основного равновесного состояния, так и докритическими деформациями. Для оболочек тонкостенных пологих и для теряющих устойчивость с образованием большого числа выпучин, в пределах каждой из которых оболочку можно рассматривать как пологую, эти уравнения допускают дальнейшие упрощения. В этом случае можно отождествить метрику на поверхности приведения с евклидовой метрикой (Л = = 1), принять приближенные равенства (3.2.21), отождествить компоненты тензоров поверхности с их физическими составляющими, а оператор ковариантного дифференцирования с оператором частного дифференцирования д . Соответствующая данному приближению система линейных дифференциальных уравнений устойчивости слоистых пологих оболочек включает в себя следующие группы зависимостей  [c.62]

Завершая обсуждение возможных упрощений уравнений устойчивости упругих слоистых композитных оболочек, отметим еще предельные переходы, аналогичные тем, которые были указаны в задаче изгиба. Так, в результате предельного перехода (3.2.20) получаются классические уравнения устойчивости, базирующиеся на гипотезе о недсформируемых нормалях. Далее, полагая в уравнениях устойчивости компоненты тензора кривизны равными нулю, придем к неклассическим уравнениям устойчивости слоистых пластин. Наконец, как и в задаче изгиба, получаются уравнения устойчивости ортотропной многослойной оболочки, податливой на поперечные сдвиги лишь в одном направлении орто-тропии (армирования).  [c.64]



Смотреть страницы где упоминается термин Устойчивость слоистых оболочек : [c.228]    [c.67]    [c.219]    [c.6]    [c.10]    [c.15]    [c.94]    [c.59]    [c.275]    [c.273]    [c.273]   
Общая теория анизотропных оболочек (1974) -- [ c.363 ]



ПОИСК



Вопросы устойчивости слоистых ортотропных оболочек

МЕТОДЫ ИНВАРИАНТНОГО ПОГРУЖЕНИЯ В ЗАДАЧАХ СТАТИКИ, УСТОЙЧИВОСТИ И ДИНАМИКИ СЛОИСТЫХ ОБОЛОЧЕК ВРАЩЕНИЯ

Некоторые вопросы устойчивости анизотропной слоистой оболочки, обтекаемой сверхзвуковым потоком газа

Некоторые задачи колебаний и устойчивости анизотропных слоистых оболочек

О численном интегрировании линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения

Оболочка Устойчивость

Оболочка слоистая

Слоистая цилиндрическая оболочка, наиболее устойчивая при осевом равномерном сжатии

Уравнения устойчивости слоистых оболочек

Устойчивость анизотропной слоистой круговой цилиндрической оболочки, обтекаемой сверхзвуковым потоком газа

Устойчивость слоистой композитной конической оболочки при равномерном внешнем давлении

Устойчивость слоистых оболочек и пластин за пределом пропорциональности



© 2025 Mash-xxl.info Реклама на сайте