Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы полупроводниковые

В настоящее время кремний является базовым материалом полупроводниковой электроники. Он используется как для создания  [c.288]

Почему кремний стал важнейшим материалом полупроводниковой электроники  [c.266]

В, а-8п, Те, 8е и др. Важнейшими представителями этой группы являются Се и 8 — осн. материалы полупроводниковой электроники. Обладая 4 валентными электронами, атомы Се и 81 образуют кристаллич. решётку типа алмаза, где каждый атом имеет 4 ближайших соседа, с каждым из к-рых связан ковалентной связью (координация соседей — тетраэдрическая). Они образуют между собой непрерывный ряд твёрдых растворов, также являющихся важными П. м.  [c.44]


Широкое применение Ш-нитридов в качестве материалов полупроводниковой техники, электронной промышленности, химического приборостроения, для изготовления конструкционной керамики общего и специального назначения, в производстве твердых, износостойких материалов, абразивов, защитных покрытий и т. д. [1—4] обусловило развитие новых методов их получения (обзоры [3—18]), которые позволяют эффективно регулировать функциональные свойства нитридов путем направленной модификации их структурного и химического состояний. Синтезируемые при этом системы (в том числе в неравновесных условиях — например, в виде тонких пленок, покрытий, гетероструктур [12—14, 17,18]), включают большое число разнообразных дефектов, отличающих характеристики получаемого материала от свойств идеального кристалла. Очевидна роль дефектов в формировании эксплуатационных параметров многокомпонентных нитридных систем — керамик, композитов [2, 3, 9,16].  [c.34]

Доводку применяют поэтому в случае чувствительных к шлифованию (хрупких) материалов (полупроводниковые материалы Si, GeV  [c.166]

Из имеющихся в настоящее время примеров применения локальных методов исследования поверхностей к решению прикладных задач рассмотрим касающиеся только следующих областей сегрегации примесей на поверхности, границах зерен, межфазных границах коррозии (включая межкристаллитную) и окисления. Имеются работы по контролю поверхностей раздела в композиционных материалах [7], идентификации атомных структур и выделяющихся на поверхности фаз [5], поверхностной диффузии и поверхностных реакций, адгезии и износа. Много работ посвящено исследованию поверхности катализаторов в связи с Их активностью [6] и материалам полупроводниковой техники [8]. Все результаты, приведенные ниже, получены методом ОЭС, иногда в сочетании с другими методами.  [c.158]

Материалы полупроводниковых лазеров  [c.39]

Таблица 24.2 Материалы полупроводниковых лазеров и светодиодов Таблица 24.2 Материалы <a href="/info/7268">полупроводниковых лазеров</a> и светодиодов
Температура плавления (табл. 84). Материалы полупроводниковой чистоты использовались только в последних трех работах, однако, поскольку величина 612° С была получена при изучении диаграммы состояния 5Ь—5е, этот результат должен считаться наиболее достоверным. Температура 615° С была получена при калориметрических измерениях и является менее точной.  [c.171]


Алмазные резцы. В целях повышения точности и чистоты обработанной поверхности применяют тонкое точение (растачивание) алмазными резцами. Алмазные резцы обладают большой износостойкостью, твердостью и наименьшим коэффициентом трения. Алмазные резцы применяют при обработке материалов с повышенной абразивной способностью пластмасс, изоляционных материалов, полупроводниковых материалов и т. д., а также бронз, латуней, алюминия и легких сплавов. При обработке пластмасс алмазными резцами их стойкость выше стойкости твердосплавных в сотни раз.  [c.430]

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ — ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ  [c.116]

Однозначный ответ на вопрос, являются ли эти материалы полупроводниковыми, должны дать исследования спектров поглощения в указанном интервале энергий, однако из-за очень высоких концентраций носителей тока такие исследования представляют очень большие экспериментальные трудности и до сих пор проведены не были.  [c.86]

Более широко известное и важное применение полупроводниковых материалов -полупроводниковые приборы с п-р-переходами. В полупроводниках п-типа уровень Ферми располагается несколько выше центра запрещенной зоны, тогда как в полупроводниках р-типа он находится ниже этого центра. Поэтому если проводники разного типа привести в контакт, т.е. создать переход, то положение запрещенных зон должно измениться таким образом, чтобы энергия Ферми для обоих материалов оказалась одинаковой. Это означает, что верхняя граница валентной зоны в материале п-типа снизится, а в материале р-типа поднимется. При этом сами по себе атомы, безусловно, не смещаются, а продолжают в виде ионов занимать свои места в кристаллической решетке. Следовательно, материал п-типа окажется заряженным положительно, а р-типа - отрицательно. Возникшая разность потенциалов называется контактной разностью потенциалов. Электроны проводимости представляют собой основные носители в материалах п-типа и неосновные носители в материалах р-типа. На границе перехода может быть создано положительное или отрицательное смещение.  [c.24]

Наиболее широко используют алмазные резцы для тонкого точения и растачивания деталей из сплавов алюминия, бронз, латуней и неметаллических материалов. Алмазный инструмент применяют для обработки твердых материалов, германия, кремния, полупроводниковых материалов, керамики, жаропрочных сталей и сплавов. При использовании алмазных инструментов повышается качество обработанных поверхностей деталей. Обработку ведут со скоростями резания более 100 м/мин. Поверхности деталей, обработанные в этих условиях, имеют низкую шероховатость и высокую точность размеров.  [c.280]

Электронно-лучевой метод перспективен при обработке отверстий диаметром 1 мм—10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических материалов рубина, керамики, кварца, полупроводниковых материалов.  [c.413]

Для обработки заготовок из высокопрочных и коррозионно-стойких сталей, жаропрочных, магнитных и твердых сплавов, полупроводниковых и других материалов, а также заготовок сложной конфигурации из легированных сталей эффективно применять электрохимические методы размерной обработки, основанные на принципе анодного растворения  [c.305]

Полупроводниковые материалы — это вещества, которые по своей удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками.  [c.387]

Идеальные кристаллы, не содержащие примесей, почти не встречаются. Примеси в кристаллах полупроводниковых материалов увеличивают количество электронов или дырок. Так, при введении одного атома 5Ь в 1 см Ое или 81 возникает один электрон, а одного атома В— одна дырка. Присутствие даже 10 примесей изменяет электрические характеристики Ое (р = 0,15).  [c.388]

При равной концентрации донорных и акцепторных примесей в кристалле электропроводность обеспечивается (как и в чистом полупроводниковом материале) электронами и дырками вследствие разрыва валентных связей. Такие полупроводниковые материалы являются компенсированными.  [c.389]

Важнейшей характеристикой, определяющей качество Ge и Si как полупроводниковых материалов, является время жизни т неосновных носителей заряда, которое должно быть максимальным.  [c.389]


Поскольку в поликристаллическом естественном материале возникают неконтролируемые изменения электрических свойств, то часто выращивают искусственные монокристаллы полупроводниковых материалов. При выращивании монокристаллов в расплав 51 опускают  [c.390]

Полупроводниковый лазер генерирует когерентное излучение в результате процессов, происходящих в р-и-переходе на полупроводниковом материале. На рис. 3.8 показана схема полупроводникового лазера на арсениде галлия. Кристалл имеет размеры около 0,5...1,0 мм . Верхняя его часть 2 представляет собой полупроводник р-типа, нижняя / — п-типа, между ними имеется р-п-переход 4 толщиной около 0,1 мкм.  [c.123]

Механические сварочные процессы обычно протекают без введения тепловой энергии извне, хотя при механическом воздействии в ряде случаев возможно частичное преобразование механической энергии в зоне соединения в тепловую. Нагрев зоны сварки в данном случае снижает предел текучести свариваемых материалов, улучшает условия их деформирования, но иногда может оказать вредное воздействие на соединяемые детали (например, в случае герметизации сваркой собранных полупроводниковых приборов).  [c.135]

Тем не менее эти методы нанесения представляют большой интерес для увеличения излучательной способности полупроводниковых материалов кремниевых приборов.  [c.107]

Промышленное применение. Технологические возможности диффузионной сварки позволяют широко использовать этот процесс в приборостроительной и электронной промышленности при создании металлокерамических и катодных узлов, вакузпм-плотных соединений из разнородных материалов, полупроводниковых приборов, при производстве штампов и т.п.  [c.511]

Д.ИЯ сварки полупроводниковых материалов, пмеюпщх различную ншрину запрещенной зоны w-i и ш.,), выбирают лазер с энергией квантов Wji, отвечающей условию < Уц <С w. .  [c.169]

Поскольку удельная электронная электропроводность у полупроводниковых материалов значительно меньше, чем у металлов, подвижность носителей заряда их больше (т. е. электроны в плохопроводящих материалах могут двигаться более свободно, чем в металлах). Поэтому тепловыми, световыми, электрическими и механическими воздействиями можно управлять электропроводностью полупроводниковых структур.  [c.387]

К полупроводниковым материалам относятся большинство минералов, неметаллические элементы IV, V и VI групп периодической системы Менделеева, неорганические соединения (оксиды, сульфиды), некоторые сплавы металлов. Наибольшее применение получили элементы IV группы — Ое и 51, обладающие тетрагональной кристаллической решеткой типа алмаза. В вершинах тетраэдра раеположены четыре атома, окружающие атом, находящийся в центре. Каждый атом связан с четырьмя ближайшими атомами силами ковалентной связи, поскольку все они обладают четырьмя внешними валентными электронами.  [c.387]

Наибольшее значение получили сплавы Ge и Se в различных сочетаниях, поскольку при этом возникают смежные области с разными типами электропроводности(ц-типаили р-типа), а граница этих областей п-р (р-п или р-п-р и т. д.)-переход является основой полупроводниковых приборов. Такие композиции можно получать лишь путем легирования полупроводниковых материалов высокой чистоты дозированным количеством соответствующих примесей (10 —Ю %).  [c.389]

Кроме элементарных полупроводниковых материалов, находят применение полупроводниковые соединения, получаемые путем сплавления или химической обработки чистых элементов СпО (для полупроводниковых выпрямителей), SbZn (для полупроводниковых термобатарей), РЬТе (для фотоэлектрических приборов и термоэлементов) и др.  [c.389]

А1А , А18Ь, ОаР, ОаАз, ОаЗЬ, 1пР, 1пА5, 1п5Ь. По ряду свойств эти химические соединения близки к полупроводниковым материалам — Ое и 51. Так, подвижность носителей заряда в них достигает больших значений ширина запрещенной зоны также велика, а вводимые примеси изменяют механизм электропроводности, поскольку некоторые атомы II группы (2п, Сс1) являются акцепторными, а VI группы (5е, Те) — донорными примесями.  [c.390]

Полупроводниковые интегральные микросхемы (ПИМС) формируются из элементов (резисторов, конденсаторов, диодов, транзисторов и др.) внутри подложки. Подложка изготавливается из полупроводниковых материалов, обычно кремния или германия, и межэлементных соединений (проводников) на поверхности подложки. Размеры ПИМС порядка 1-5 мм .  [c.538]

В зависимости от примесей кремний приобретает электронную проводимость п или, наоборот, пропускает заряды с недостатком электронов, где места отсутствующих электронов условно называют дырками, то есть приобретает дырочную проводимость р. С целью получения локальных областей для элементов микросхемы формируют разделительные области р" -типа - области дырочной проводимости с повышенной концентрацией носителей. Создание элементов в полупроводниковом материале требует наличия р-и-переходов - границы между областями с электронной (и-типа) и дырочной (р-типа) проводимостью. На рис. 25.2 показана последовательность основных технологических операций изготовления ПИМС на биполярных транзисторах, получаемых по планарно-эпитаксиальной технологии (эпитаксия - процесс ориентированного наращивания атомов одного кристаллического вещества на другом). Изготовление ПИМС на биполярных транзисторах включает  [c.539]

Диод германиевый — полупроводниковый диод монокристаллнчес-кой структуры, изготовленный из примесных полупроводниковых материалов, полученных на основе германия [4].  [c.142]


Смотреть страницы где упоминается термин Материалы полупроводниковые : [c.309]    [c.358]    [c.409]    [c.620]    [c.6]    [c.12]    [c.169]    [c.391]    [c.387]    [c.388]    [c.390]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.86 ]



ПОИСК



Анализ температурной зависимости микротвердости некоторых полупроводниковых материалов

Дефекты в полупроводниковых материалах

Конструкционные сплавы, сплавы с особыми тепловыми, упругими свойствами и полупроводниковые материалы

Л полупроводниковый

Легирование полупроводниковых материалов

Материалы для лазерной техники полупроводниковые

Материалы радиотехнические полупроводниковые

Металлы высокой степени чистоты и полупроводниковые материалы

Некоторые полупроводниковые материалы

Некоторые полупроводниковые материалы и их параметры

Основные группы полупроводниковых материалов

Очистка полупроводниковых материалов

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ Глава тринадцатая. Элементарные полупроводники

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ Элементы зонной теории твердого тела

Полиэфирэпоксиды полупроводниковые материалы

Полупроводниковые материалы (И. В. Кириллов)

Полупроводниковые материалы Коэффициент теплопроводности (X, Вт м- К-) германия с различной концентрацией носителей тока

Полупроводниковые материалы ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

Полупроводниковые материалы ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

Полупроводниковые материалы и изделия

Полупроводниковые материалы и их основные свойства

Полупроводниковые материалы и их параметры

Полупроводниковые материалы и их применение

Полупроводниковые материалы и приборы

Полупроводниковые материалы и технология их получения

Полупроводниковые материалы используемые для изготовления приемников излучения

Полупроводниковые химические соединения и материалы на их основе

Получение чистых полупроводниковых материалов

Строение и свойства полупроводниковых материалов

Цветные металлы и их сплавы. Полупроводниковые материалы

Чистые металлы и полупроводниковые материалы

Электроугольные изделия. Полупроводниковые материалы Люминофоры Электроугольные изделия

Элементы. Неорганические соединения. Органические соединения. Полупроводниковые и оптические материалы. Высокотемпературные материалы. Стали и промышленные сплавы Двухкомпонентные сплавы. Легкоплавкие сплавы. Стекла. Полимерные материалы. Топливо, масло, гидравлические жидкости. Хладоны и теплоносители



© 2025 Mash-xxl.info Реклама на сайте