Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения динамики упругой среды

УРАВНЕНИЯ ДИНАМИКИ УПРУГОЙ СРЕДЫ  [c.14]

Таким образом, в общем случае задачи динамики упругой среды сводятся к определению четырех волновых функций. Для уменьшения произвола служит условие div ф = 0. Вместо этого условия можно взять любое другое дополнительное условие, совместное с остальными условиями задачи, пользуясь тем, что вектор ф можно выбирать с точностью до градиента произвольной функции. Существенно, что представление (5.50) оказывается весьма неудобным в трехмерном случае, когда для построения рещения вводится криволинейная система координат. Поскольку векторное уравнение в проекциях на оси дает, вообще говоря, связанную систему, уравнений для проекций вектора, то эту скалярную систему придется решать совместно.  [c.296]


Воспользовавшись методом инспекционного анализа, рассмотрим несколько подробнее систему уравнений динамики упругих насыщенных мягких пористых сред в изотермических условиях.  [c.46]

Сплошность. Реальные тела, строго говоря, не являются сплошными, а имеют дискретную структуру. Однако при достаточно плавном изменении напряженного состояния, когда напряжения на расстоянии порядка межатомного или порядка размера зерна в поли-кристаллическом материале можно считать постоянными, влияние дискретности практически отсутствует (проявляется слабо). Таким образом, предположение о сплошности обычно оправданно, введение же этого понятия существенно облегчает построение математической теории упругости и анализ конкретных задач. Вместе с тем результаты, следующие из теории упругости сплошной среды, нельзя абсолютизировать. В частности, поверхности разрыва напряжений и скоростей, определяемые уравнениями динамики сплошной среды, в действительности должны быть несколько размыты, а структура фронта волны должна зависеть от микроструктуры материала. С дискретными моделями связаны первые исследования по теории упругости (см. [20]). В последнее время теория упругой среды с микроструктурой получила значительное развитие [20 22 49 50]. Влияние дискретности на распространение упругой волны будет проиллюстрировано на простом примере в 2.  [c.14]

Вторая основная задача динамики (обратная) не может быть полностью решена посредством принципа Даламбера, так как основная ее трудность заключается в интегрировании дифференциальных уравнений движения. Принцип Даламбера в его применении к решению обратной задачи динамики можно рассматривать как особую методику составления дифференциальных уравнений движения. Эта методика иногда бывает полезной. Поэтому принцип Даламбера находит широкие применения в динамике сплошных сред (теории упругости, гидродинамике и т. д.).  [c.421]

В заключение этой главы, как пример развития уравнений кинематики и динамики сплошной среды, рассмотрим основные уравнения теории упругости.  [c.511]

Подставляя (11.13) и (11.13 ) в (11.12) и (11.12 ), получаем уравнение динамики (моментной теории) или уравнение упруго-динамического состояния среды О (р, X, (X, а, 7, 8, о, Р) в компонентах смещения и вращения, соответствующих массовой силе и массовому моменту  [c.45]


Тогда уравнение упруго-динамического состояния (см. (11.14), (11.14 )) среды О (р, Я, 1, а, 8, и, р), соответствующего массовой силе 5 = и массовому моменту = ( ) в компонентах смещения, или уравнение динамики, запишется в виде  [c.50]

Успехи динамики упругих тел в Советском Союзе были в известной мере подготовлены достижениями ученых дореволюционной России. Первые работы по общим методам интегрирования уравнений динамической теории упругости были выполнены еще в 1831 г. М. В. Остроградским, построившим (одновременно с С. Пуассоном) решения уравнений движения при произвольных начальных данных. Суммируя решения простого гармонического типа, М. В. Остроградский получил решение, соот-ветствующее распространению в неограниченной упругой среде волн двух типов волн расширения и волн искажения. При распространении волн первого типа в среде возникают сжатия, растяжения и сдвиги, но отсутствуют вращения волны второго типа вызывают сдвиги и вращения, не создавая объемного расширения.  [c.292]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

Многие системы механики сплошной среды, такие как уравнения газовой динамики, уравнения магнитной гидродинамики, уравнения теории упругости, уравнения Максвелла принадлежат к описанному типу систем уравнений, выражающих законы сохранения, и мы в дальнейшем будем рассматривать в качестве основного случая именно такие системы.  [c.17]

В настоящей главе сначала рассматриваются решения задач о распространении простых волн ). Дается анализ случаев двухпараметрического нагружения границы исследуемой среды. Последовательно рассматриваются тела, свойства которых определяются соответственно уравнениями теории пластического течения, уравнениями динамики грунтов С. С. Григоряна и уравнениями билинейной теории пластичности. Затем излагаются решения задач о распространении продольно-поперечных волн в упруго/вязкопластических однородных средах (плоские и радиальные цилиндрические волны).  [c.186]

До сих пор не существует полного решения задачи о распространении продольно-поперечных волн в среде, описываемой уравнениями динамики грунтов С. С. Григоряна для нагрузок, произвольно изменяющихся во времени. Построение волны пластической нагрузки в случае монотонно возрастающих от нуля нагрузок 011 и 012 на границе полупространства не представляет трудности. Эта волна строится аналогично случаю упруго/вязкопластической среды (см. п. 23), причем для ее определения используется условие (4.7). Локальная скорость распространения пластической волны нагрузки при выборе функции Р р) в виде (4.14) определяется формулой  [c.199]


Вернемся теперь к решению задачи динамики упруго/вязкопластического полупространства х О, ослабленного цилиндрической полостью (рис. 86). Динамические уравнения задачи запишем в контравариантных составляющих тензора напряжений в естественном базисе, тензора скоростей деформаций и в контравариантных составляющих вектора скорости ьк Определяющие уравнения для упруго/вязкопластической среды возьмем в виде (3.14), ограничившись при этом условием Губера— Мизеса (3.8), при котором эти уравнения приобретают вид  [c.253]

В главах I и V рассматриваются уравнения динамики сплошной упругой среды, идеальной сжимаемой жидкости и уравнения стержней и пластин. Математические модели являются определенной идеализацией реальных сред или конструкций, поэтому основное внимание уделено выяснению областей применимости уравнений, установлению связи между уравнениями теории упругости и приближенными уравнениями динамики стержней и пластин.  [c.5]

Уравнения динамики линейно упругой однородной изотропной среды  [c.24]

Сенатов С. И. Групповая классификация уравнений плоской неоднородной теории упругости,—Динамика сплошной среды/Ин-т гидродинамики СО АН СССР, Новосибирск, 1982, вьш, 55, с, 164—170,  [c.140]

С точки зрения исследования распространения волновых процессов одним из существенных качеств применяемой модели динамики сплошной среды является ее гиперболичность, т. е. соответствующие дифференциальные уравнения должны принадлежать к уравнениям так называемого гиперболического типа. Физически это выражает конечность скорости распространения любого возмущения в рассматриваемой среде, что, однако, не всегда принимается во внимание при построении математических аппроксимаций. Это обстоятельство особенно важно для построения упрощенных теорий. Такие приближенные теории строятся обычно как асимптотически вырожденные по параметру (параметрам) или как некоторые аппроксимации точно поставленных задач математической теории упругости. Гиперболические аппроксимации являются, по-видимому, наиболее подходящими. Они, в отличие от параболических аппроксимаций, характеризуют процессы распространения волн с разрывами и поэтому способны описать динамические явления в областях, расположенных ближе к реальным волновым фронтам, предсказываемым трехмерной теорией. Иначе говоря, если рассматривать гиперболические и параболические аппроксимации одного порядка (имеется в виду порядок пространственно-временного дифференциального оператора), то с помощью первых можно построить теории, применимые при более высоких частотах гармонических составляющих [2.54]. Все сказанное относится к модели динамической теории упругости, которая, как известно, является гиперболической, и ее аппроксимациям— теориям стержней, пластин и оболочек. Условию гиперболичности не удовлетворяют классические тео-  [c.6]

До сих пор, рассматривая распространение волн в кристаллах, мы не принимали во внимание дискретную структуру кристаллической решетки. Так можно поступать до тех пор, пока длина акустической волны X остается много большей, чем постоянная решетки а, или до частот 100 ГГц. Выше этого предела дисперсионные кривые, получаемые из уравнений классической теории упругости, уже плохо согласуются с микроскопическими расчетами, базирующимися на уравнениях динамики решетки. Поэтому, если оставаться в рамках феноменологических моделей механики сплошных сред, то уравнения состояния кристалла необходимо модернизировать для учета дискретности среды, макроскопически проявляющейся в нелокальности ее реакции на приложение переменного в пространстве внешнего воздействия. Это можно сделать с помощью так называемой нелокальной теории упругости [19], представляющей собой феноменологическое обобщение классической механики сплошной среды. Одно уравнение состояния элемента сплошной среды, описывающее как пространственную, так и временную нелокальность, уже приводилось нами при рассмотрении релаксационных процессов. Если не учитывать временную нелокальность (которая, в частности, ответственна за диссипацию энергии в среде), то для твердого тела нетрудно получить следующее уравнение состояния (нелокальный закон Гука)  [c.231]

Ниже рассматривается модельная задача о распространении трещи ны в линейно упругой среде периодической блочной структуры На такой задаче выявляется основная роль структуры, под влиянием которой формируется излучение от края распространяющейся трещи ны, не обнаруживаемое в рамках модели однородной сплошной среды Определение мощности излучения аналитическими методами сводится к квадратуре (4.8). Рассматриваемая здесь блочная структура по суще ству также является решеткой, но в отличие от рассмотренной в пре дыдущем параграфе в ней учитывается инерция вращения частиц-блоков. Динамика такой системы описывается системой из трех уравнений (вместо одного).  [c.280]

В главах 1 и 2 мы рассмотрели упругую среду, содержащую несвязанные между собой поры, трещины и включения других фаз. В этом случае динамика среды изначально описывалась микроскопическими уравнениями упругости, и усреднение этих уравнений по случайным неоднородностям принципиально не меняло их характер. Это обстоятельство объясняется тем, что точная усредненная функция  [c.80]

Жидкости, занимая по молекулярному строению промежуточное положение между газами и твердыми телами, проявляют свойства, присущие как газам, так и деформируемым твердым телам. Это позволяет описать механическое движение всех упомянутых сред едиными дифференциальными уравнениями, составляющими основу механики сплошной среды. Решение этих уравнений требует учета специфических свойств каждой из упомянутых сред, поэтому механика сплошных сред разделяется на ряд самостоятельных дисциплин гидромеханику, газовую динамику, теорию упругости, теорию пластичности и др.  [c.6]


Значение упругих гироскопических систем с распределенными и сосредоточенными массами в современном машиностроении продолжает возрастать. Изучение их динамики во многих случаях приводит к рассмотрению систем квазилинейных дифференциальных уравнений в частных производных с квазилинейными краевыми условиями [1]. Б реальных объектах среди действующих сил всегда присутствуют также и диссипативные силы. Однако в большинстве случаев при исследовании колебаний упругих систем силы демпфирования учитывают только в зонах резонанса. Вне этих зон ими обычно пренебрегают. Исключение составляют враш ающиеся системы, где внутреннее трение может служить причиной потери устойчивости в закритической области [2] и привести к возбуждению автоколебаний 3].  [c.5]

Упругие волны в элементах конструкций — стержнях, пластинах оболочках — определяются уравнениями динамики упругой среды, приведенными в главе 1. Однако по истечении некоторого времени после приложения нагрузки волновая картина становится здесь достаточно сложной вследствие многократного отражения отдельных волн от границ тела. Для того чтобы дать удовлетворительное количественное описание процесса, необходимо отказаться от абсолютной точности (в рамках данной теории) в пользу простоты, по крайней мере, в тех районах, где число отраженных волн велико. Это, вообп е говоря, выполнимо с помощью асимптотических методов.  [c.214]

Замечая, что величину dpjdp можно принять за характеристику сжимаемости среды — роста плотности с давлением,—заключим, что чем больше сопротивляемость среды сжатию, тем больше скорость распространения звука в ней. Приведем округленные значения скорости распространения звука в разных средах в воздухе — 340 м/с, в воде—1500 м/с, в твердом теле — 5000 м/с (вопрос о распространении малых возмущений в твердых телах представляет особые трудности, так как требует рассмотрения уравнений динамики упругого тела с характерными для него двумя скоростями распространения возмущений). Очень малые скорости распространения звука наблюдаются в легко сжимаемых жидких пенах.  [c.153]

Функция f (a, и) полностью определяет влияние структуры среды на макропараметры волны разрушения. Введение этой функции достаточно для замыкания уравнений динамики упруго-хрупкой сплошной среды без структуры.  [c.257]

Мун и Моу [118] построили теоретическую модель, описывающую рассеяние волн в композиционных материалах, наполненных частицами. При этом рассматривалась динамика отдельной частицы, находящейся в упругой среде. Такой подход представляется приемлемым первым приблияшнием для материалов с малой степенью (Fg <(0,10) и случайным характером наполнения. Дифракция упругих волн в материале с отдельными частицами обсуждалась также в работе Моу и Пао [119]. Когда плотность жесткого включения рз больше плотности окружающей среды (матрицы), т. е. рз )> pj, уравнение движения, описывающее поступательное перемещение сферической частицы U, имеет вид  [c.298]

В данной статье изложены методы и результаты теоретического исследования напряженно-деформированного состояния многослойных толстостенных труб, нагруженных волной давления в жидкости. Динамика конструкций изучается на основе одно- и трехмерных уравнений теории упругости. Поверхности раздела слоев определяются уравнениями г = onst. Взаимодействие с окружающей средой учтено по гипотезе плоского отражения.  [c.249]

Разработку новых методов интегрирования дифференциальных уравнений динамики мы находим главным образом в трудах Гамильтона, французского ученого Пуассона (1781—1840) и выдающегося немецкого математика Якоби (1804—1851). В связи с прогрессом машиностроения, железнодорожной и строительной техники, с необходимостью исследования -движения тел в сопротивляющейся среде в XIX в. и в особенности в текущем столетии весьма быстро и успешно развивается механика сплошной среды — гидро- и аэромеханика и теория упругости. Развитие этих разделов теоретической механики, представляющих собой в настоящее время обширные самостоятельные дисциплины, связано с именами таких крупнейших ученых, как Пуассон, Ляме, Навье, Коши, Сен-Венан (во Франции), Гельмгольц, Кирхгоф, Клебш, Мор, Прандтль (в Германии), Стокс, Грин, Томсон, Рэлей (в Англии) и многих других.  [c.22]

Применяя уравнение (14.105) к пластической деформации упругого тела, которое мы рассматриваем как сплошную среду, мы получим уравнение (14.95). Следовательно, вариационное уравнение (14.98), вытекающ,ее из (14.95), является вариационным уравнением Журдена в динамике пластической среды.  [c.390]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]

Пуассон (Poisson ) Симеон Дени (П81- ЪА0) — французский математик, механик и физик. Окончил Политехническую школу в Париже (1798 г.). Сформулировал частный случай закона больших чисел и одну из предельных теорем теории вероятностей предложил названное его именем распределение вероятностей случайных величин. Разработал математическую теорию электростатики, обобщил уравнения Навье — Стокса на случай сжимаемой ияэкой жидкости с учетом теплопередачи, обобщил уравнения теории упругости па анизотропные среды, решил ряд задач теории упругости, ввел скобки Пуассона и доказал ряд важных теорем динамики. В теории потенциала изучил носящее его имя уравнение. Доказал устойчивость планетных движений. Написал Курс механики (1811 г.), многократно переиздававшийся.  [c.108]


Под термином разрушение понимаем обычно устойчивость и распространение достаточно крупных треш,ин. Последние рассматриваются как свободные от напряжений поверхности в краевых задачах теории упругости и пластичности. В предыдущих параграфах настоящей главы развивается вслед за работами [13, 88, 115, 226] другой подход к проблеме разрушения, основанный на введении переменной I, характеризующей усредненную по пространству динамику микропустот. Среду считаем сохраняющей в среднем сплошность. В результате проблема разрушения может быть сформулирована как задача решения уравнений (1.1), (1.2), (1.5), (1.7) при определяющих соотношениях (1.10), где параметры заменяются на Е. Уравнения для относительного объема микропустот могут иметь разный вид [105, 124, 175]. Отметим модель разрушения, предложенную Р. И. Ниг-матулиным и Н. X. Ахмадеевым [151], так как она будет использоваться при расчетах в главе V. Согласно этой модели  [c.50]

В дальнейшем пользуемся упрощенной моделью, в которой предполагается, что взаимодействие тела с преградой происходит в течение всего времени пребывания тела в области л >0. Ясно, что это время больше значения t из предыдущей задачи, и для моментов времени t>f получаем физически абсурдную картину стенка удерживает тело т, когда оно двил<ется от стенки в отрицательном направлении. Таким образом, вторая модель не претендует на физическое обоснование теории удара. Однако (какпоказано ниже) в результате некоторого предельного перехода она также приводит к модели удара с трением, изложенной во введении, а простота получающихся при этом формул позволяет развить эффективный метод решения ряда задач устойчивости движения в системах с неудерживающими связями (см. гл. 3). Идея метода состоит в следующем односторонние связи заменяются средой Кельвина — Фойгта, и в решениях полученных уравнений движения совершается предельный переход, при котором коэффициенты упругости и диссипации некоторым согласованным образом устремляются к бесконечности. В пределе получается движение системы с неупругим ударом, причем характеристики среды Кельвина —Фойгта определяются по заданному с самого начала коэффициенту восстановления. Такой подход позволяет при решении задач о движении систем с ударами использовать обычные дифференциальные уравнения динамики с дополнительными силами определенного вида. Основным результатом здесь являются теоремы  [c.41]

Итак, показано, что могут существовать несколько различных квазипоперечных ударных волн. Всегда существует одна быстрая (верхний эволюционный прямоугольник) и одна медленная (нижний прямоугольник) ударные волны, эволюционные отрезки которых примыкают к начальной точке и которые при уменьшении своей интенсивности переходят в бесконечно слабые скачки, совпадающие с волнами Римана. Кроме этого в упругой среде могут существовать ударные волны, интенсивность которых не может быть как угодно малой, и их эволюционные отрезки ЕК (при х > 0), а также LD и НК (при х < 0) на ударной адиабате отделены от начальной точки А областями неэволюционности. Будем далее называть их ударными волнами второго типа. Наличие аналогичных волн отмечалось ранее в газовой динамике в средах с усложненным уравнением состояния (Галин [1959]).  [c.203]

Известны различные формулировки задачи о распространении волны разрушения (волны дробления) в упругом хрупком теле [65- 67]. Каждый из предложенных вариантов теории такого процесса основан на какой-либо гипотезе, например, о скорости волны разрушения [14, 66, 67], об интенсивности упругого предвестника [22] или об энергии разрушения [91, 107]. Введение дополнительного соотношения необходимо для замыкания системы уравнений динамики сплошной упруго-хрупкой среды. Однако без привлечения данных о структуре фронта разрушения подобное соотношение нельзя обосновать. Это обстоятельство отличает волны разрушения от обычных нелинейных волк, макропараметры которых определяются независимо от структуры фронта [107].  [c.249]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]


Смотреть страницы где упоминается термин Уравнения динамики упругой среды : [c.146]    [c.166]    [c.50]    [c.34]    [c.289]    [c.43]    [c.28]    [c.276]    [c.327]    [c.309]    [c.226]   
Смотреть главы в:

Нестационарные упругие волны  -> Уравнения динамики упругой среды



ПОИСК



70 - Уравнение динамики

Среда упругая

Упругость среды

Уравнения Уравнения упругости

Уравнения динамики линейно упругой однородной изотропной среды

Уравнения динамики упругих тел

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте