Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы физических измерений

Единицы физических измерений 322 Естественная система координат  [c.337]

К таким системам относится Международная система единиц измерения физических величин (СИ), в которой основными единицами измерения механических величин являются метр (м), килограмм массы (кг) и секунда (с). Единицей же измерения силы является производная единица — 1 ньютон (Н) 1 Н — это сила, сообщающая массе в 1 кг ускорение 1 м/с (1Н = 1 кг-м/с ). О том, что собой представляют 1 м, 1 кг и 1 с, известно из курса физики. Международная система единиц (СИ) введена в СССР как предпочтительная с 1961 г. и в данном курсе мы пользуемся ею.  [c.184]


Для измерения механических величин применяются две системы единиц физическая и техническая.  [c.9]

Государственные стандарты устанавливают требования преимущественно к продукции массового и крупносерийного производства широкого и межотраслевого применения, к изделиям, прошедшим государственную аттестацию, экспортным товарам они устанавливают также обш,ие нормы, термины и т. п. Исходя из этого, можно указать на следуюш,ие объекты государственной стандартизации общетехнические и организационно-методические правила и нормы (ряды нормальных линейных размеров, нормы точности зубчатых передач, допуски и посадки, размеры и допуски резьбы, предпочтительные числа и др.) нормы точности изделий межотраслевого применения требования к продукции, поставляемой для эксплуатации в различных климатических условиях, методы их контроля межотраслевые требования и нормы техники безопасности и производственной санитарии научно-технические термины, определения и обозначения единицы физических величин государственные эталоны единиц физических величин и общесоюзные поверочные схемы методы и средства поверки средств измерений государственные испытания средств измерений допускаемые погрешности измерений системы конструкторской, технологической, эксплуатационной и ремонтной документации системы классификации и кодирования технико-экономической информации и т. д.  [c.34]

Основные задачи метрологии (ГОСТ 16263—70) — установление единиц физических величин, государственных эталонов и образцовых средств измерений, разработка теории, методов и средств измерений и контроля, обеспечение единства измерений и единообразных средств измерений, разработка методов оценки погрешностей, состояния средств измерения и контроля, а также передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.  [c.109]

Необходимо обратить внимание и на то, что в ряде случаев не делается различия между понятиями физические константы и еще более обобщенным термином универсальные, фундаментальные или мировые константы. Покажем это на ряде примеров. Первым из них является претенциозное название табл. 2. Так же просто трактуется вопрос в [16] ...принято считать, что универсальные, или мировые, фундаментальные — все три термина употребляются обычно как синонимы... В превосходной монографии [17], к сожалению, читаем, что коэффициенты пропорциональности, подобные гравитационной или инерционной постоянным и зависящие от выбора основных единиц (системы измерений.— О. С.) и определяющих соотношений, получили название универсальных или мировых постоянных . Анализ физической литературы показывает, что, по всей видимости, термин универсальные постоянные постепенно выходит из употребления, его можно считать устаревшим. Понятие же мировые постоянные , напротив, еще только входит в моду , но чрезвычайно важно отметить, что ему с самого начала придается иной, значительно более вселенский по своему содержанию физический смысл. Приведем в подтверждение этого цитату С современной точки зрения кажется очень удачным, что первые измерения величины с пришли из астрономии — это дало возможность определить скорость света в вакууме, т.е. действительно мировую постоянную [18]. Более подробно эти вопросы обсуждаются в ч. 3.  [c.31]


К нематериальным объектам стандартизации относятся производственные, технологические, строительные процессы, вида производственных работ, методы (измерения, проверки, испытания, расчетов, конструирования, технологии), нормативно-техническая документация, параметрические (размерные) ряды конкретной продукции, научно-технические термины, 0П1)еделения, обозначения, символы, коды, единицы физических величин, классификационные признаки, объекты охраны природы, безопасности труда и т. п.  [c.18]

Стандартизация устанавливает единицы физических величин, термины и обозначения, требования к продукции и производственным процессам (выбор или определение характеристик той или иной продукции, методов контроля и измерений, технических требований, характеризующих качество изделий, взаимозаменяемость и т. д.), требования, обеспечивающие безопасность людей и сохранность материальных ценностей и т. д.  [c.20]

Мы видим, таким образом, что равенствам, выражающим физические законы, всегда можно придать такой вид, чтобы эти равенства не нарушались при изменении масштабов единиц (т. е. чтобы размерности правой и левой частей равенства были одинаковы). Именно в таком общем, не зависящем от выбора масштабов виде и принято обычно выражать все физические законы и вообще все соотношения между физическими величинами. Иногда, однако, бывает удобнее не соблюдать условия одинаковой размерности правой и левой частей (выражения получаются проще). Но тогда обязательно должно быть оговорено, в каких единицах производится измерение всех входящих в соотношение величин, и нужно иметь в виду, что применять другие единицы, отличные от указанных, уже нельзя.  [c.30]

МИ 221—81 Методика внедрения СТ СЭВ 1052—78 Метрология. Единицы физических величин в области измерений давления, силы и теплофизических измерений .  [c.9]

При составлении таблиц использовались также ГОСТ 8.417—81 Единицы физических величин, Документ UIP-20-1978 Обозначения, единицы измерения и терминология в физике [21] и другие пособия [14, 15].  [c.33]

Все величины, приводимые в книге, даются в единицах СИ — Международной системе единиц, введенной в СССР с 1 января 1982 года в соответствии с ГОСТ 8.417-81 (СТ СЭВ 1052-78) Государственная система обеспечения единства измерений. Единицы физических величин ,  [c.8]

Встречающиеся в природе и применяемые в технике жидкости, их состояние и поведение при различных гидравлических явлениях находятся в непосредственной зависимости от их физических свойств. Поэтому первой задачей, предшествующей непосредственному изучению гидравлики, является определение физических свойств жидкостей, выявление влияющих на них факторов и установление единиц их измерения,  [c.9]

Физический смысл кинематического коэффициента вязкости также виден из единиц его измерения  [c.14]

Второе издание вышло в 1969 г. В третьем издании отражены последние достижения в технике измерений, учтены изменения стандартов на проведение испытаний, терминологии и единиц физических величин.  [c.2]

Комплекс правил законодательной метрологии, регламентирующий порядок подготовки, выполнения и обработки результатов измерений, эталонная база и комплекс образцовых средств измерений, обеспечивающих передачу размера единиц физических величин от эталонов образцовым и рабочим средствам измерений,—все это обеспечивается Государственной метрологической службой СССР. Задачи, возложенные на нее, выполняются через ГСИ — комплекс государственных стандартов, являющийся нормативно-правовой основой метрологического обеспечения.  [c.105]

ГОСТ 8.417-81 (СТ СЭВ 1052-78). Государственная система обеспечения единства измерений. Единицы физических величин.  [c.299]

Условием объективного измерения и установления единиц физических величин является возможность получения абсолютного значения относительных количеств.  [c.95]

Так как выходные параметры крупных узлов выражаются большим количеством различных основных и кратных единиц, то практически более удобно иллюстрировать принципы хранения и поиска информации с помощью параметров, характеризующих работу элементов. Примеры таких параметров, приведенные в табл. 2.6, показывают, какие требования необходимы для описания характеристик элементов. Предполагается, что можно расширить эту таблицу либо составить нужное количество новых таблиц с тем, чтобы включить в них все применяемые критерии испытаний, в том числе результаты физических измерений и визуального осмотра, а также электрические, механические или химические выходные величины или параметры.  [c.111]


Единицы измерения углов. Международная система единиц (СИ), ГОСТ 8.417—81 (СТ СЭВ 1052—78) Метрология. Единицы физических величин), не вводят угловые единицы измерения в число основных. Однако угловые единицы не являются и производными. В С,И включены две дополнительные угловые единицы —радиан и стерадиан— для измерения плоского и телесного углов.  [c.55]

Метрологическое обеспечение — одна из основных частей комплексной системы управления качеством продукции. Технической основой метрологического обеспечения является система государственных эталонов единиц физических величин, обеспечивающих воспроизведение единиц с наивысшей точностью в целях передачи нижестоящим средствам измерений по поверочной схеме.  [c.111]

В общем случае нормальной областью влияющей величины можно считать область значений, в пределах которой ее действием Ау на результаты измерений в отношении их правильности, воспроизводимости и единства по установленным нормам можно пренебречь. Значение влияющей величины, к которому для обеспечения правильности и единства формально относят результаты измерений, называют нормальным по размеру. Следует различать нормальную по размеру влияющую величину (нормальную величину) как некое количественное содержание и номинальное значение нормальной величины, т. е. приписанное этому содержанию значение в конкретных единицах физической величины. Таким образом, нормальные условия. характеризуются нормальным значением (номинал) и нормальной областью значений относительно номинала. Нормальные условия целесообразно подразделить на унифицированные /, т. е. единые для любых объектов, средств и методов измерений с заданной точ-  [c.11]

В метрологии по поверочным схемам реализуется передача размера единицы физической величины от эталонов образцовым мерам и приборам и далее рабочим средствам измерений [8,41]. Однако в поверочных схемах не приводятся требования к условиям передачи размера, что существенно для практического обеспечения единства измерений,  [c.41]

Нормальная ориентация в поле тяжести Земли выбирается обычно совпадающей с вертикалью (0° по отношению к направлению силы тяжести) либо с горизонталью (90° к направлению силы тяжести). В метрологическом плане целесообразно, чтобы нормальная ориентация линий и плоскостей рабочих измерений совпадала с соответствующей ориентацией эталонов и образцовых средств, чем уменьшаются погрешности передачи значения единицы физической величины.  [c.161]

Давление как физическая величина подробно рассмотрено в подразд. 1.2. Основной единицей его измерения в СИ является Па (паскаль). Давление может быть абсолютным, избыточным и вакуумным. Параметром термодинамического состояния является абсолютное давление.  [c.86]

Техническими основами метрологического обеспечения являются система государственных эталонов единиц физических величин система разработки, постановки на производство и выпуска в обращение рабочих средств измерений система государственных испытаний и метрологической аттестации средств измерений система государственной и ведомственной поверки средств измерений.  [c.42]

Создание системы государственных эталонов единиц физических величин. Государственные эталоны — основа всех измерений в народном хозяйстве.  [c.43]

I Метрология — наука об измерениях. Виды измерений. Физические величины как объ-I ект измерений. Международная система единиц физических величин  [c.486]

В международной системе единиц физических величин единицей измерения давления является 1 Н/м- — паскаль (Па). Более удобными для практического использования являются кратные единицы — килопаскаль (кПа) п мегапаскаль (МПа)  [c.7]

Порядок передачи размера единиц физической величины от эталона или исходного образцового средства к средствам более низких разрядов (вплоть до рабочих) устанавливают в соответствии с поверочной схемой. Так, по одной из поверочных схем передача единицы длины путем последовательного лабораторного сличения и поверо[( производится от рабочего эталона к образцовым мерам высшего разряда, от них образцовым мерам низших разрядов, а от последних к рабочим средствам измерения (оптиметрам, измерительным машинам, контрольным автоматам и т. п.).  [c.110]

Размер единицы физической величины (размер единицы) — количественная определенность единицы физической величины, воснроизводимой или хранимой средством измерений 80].  [c.27]

Физический смысл динамического коэффициента вязкости виден из раосмотрения единиц его измерения в числителе— работа, а в знаменателе — объемный расход  [c.13]

Д. И. Менделеев следующим образом охарактеризовал роль измерений для развития науки Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры . Системы единиц физических величин стали создаваться в XVIII—XIX вв. Первая система единиц, принятая в 1791 г. Национальным собранием Франции, имела в своей основе только две единицы метр и килограмм. Затем, в 1832 г., немецкий ученый К- Гаусс предложил систему, которую он назвал абсолютной, содержащую три основные единицы миллиметр, миллиграмм и секунду. В последующем на принципе, предложенном К. Гауссом, был создан ряд систем единиц физических величин, главные из которых кратко рассматриваются ниже.  [c.87]


Физическое измерение времени является лишь приближённым осуществлением такой идеальной арифметизации течения времени. Основанием физической. арифметизации течения времени является видимое вращение небесного свода вокруг некоторой пряшй, называемой осью мира. Равным углам поворота небесного свода мы приписываем равные промежутки протекшего времени. Промежуток времени, в течение которого небесный свод совершает одно обращение относительно Земли, носит название звёздных суток. Звёздные сутки являются исходной астрономической единицей времени.  [c.43]

Эталон — средство измерений (или комплекс средств рэмерений), обеспечивающее воспроизведение и хранение единицы физической величины (или одну из этих функций) с целью передачи размера единицы образцовым, а от них рабочим средствам измерений, и утверждепиое в качестве эталона в установленном порядке.  [c.520]

РАЗМЕРНОСТЬ единицы физической величины, или просто размерность велв-ч и н ы,— выражение, показывающее, во сколько раз изменится единица данной величины при известном изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен (его заключают в квадратные скобки или предваряют физ. величину символом dim , от лат. dimensio — измерение), составленный пз произведения обобщённых символов осн. единиц в различных (целых или дробных, полошит, или отрицат.) степенях, к-рые наз. показателями Р. Если основными являются единицы величин А, Я и С, а единица производной величины D пропорциональна единицам величины А в степени х, величины В в степени у и величины С в степени г, то Р. единицы величины D запишется в виде произведения  [c.244]

ШКАЛА ИЗМЕРЁНИЙ—основополагающее понятие ме трологии, позволяющее количественно или к.-л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-ра), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют множество, элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа эквивалентность (равенство), больше , меньше , возможность суммирования элементов или деления одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,— на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит, задач) описывающая логич. структуру рассматриваемого свойства этого объекта.  [c.465]

В качестве единиц для измерения давления получили наибольшее распространение 1) физическая атмосфера 2) техническая атмосфера 3) миллиметр ртутного столба 4) миллиметр и метр водяного столба 5) гектопьеза 6) бар. Соотношения между различными единицами давления приведены в табл. 9.  [c.475]

Средства измерения. Средства измерения (СИ) — это средства, предназначенные для измерений, вырабатывающие сигнал (показание), несущий информацию о значении измеряемой величины, или воспроизводящие величину заданного размера. Они представляют собой конструктивно законченные изделия, предназначенные для измерений. СИ, предназначенные для целей воспроизведения единиц физических величин и передачи их размеров другим СИ, являются образцовыми. Все другие СИ, используемые не для этих целей, являются рабочими. С их помощью вьшолвяют измерения при контроле качества продукции.  [c.44]


Смотреть страницы где упоминается термин Единицы физических измерений : [c.8]    [c.108]    [c.32]    [c.5]    [c.2]    [c.37]    [c.84]    [c.7]    [c.4]    [c.425]   
Справочник по гидравлике Книга 1 Изд.2 (1984) -- [ c.322 ]



ПОИСК



224 — Единицы измерени

Единицы измерения

Единицы физические

Измерение физической



© 2025 Mash-xxl.info Реклама на сайте