Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура блочная

Структуры блочных данных строятся двух основных типов ассоциативные (равноправные по какому-либо признаку) и иерархические [49]. Ассоциативные структуры, как правило, строятся по кольцевой схеме соединения блоков и удобны для построения архивов данных однотипных элементов ЭМП. Иерархические структуры удобнее строить, если между блоками существуют отношения под-  [c.193]

Свойства кристаллов данного металла связаны с многими факторами его внутреннего строения — содержанием (плотностью) вакансий и дислокаций, с их расположением дислокационной структурой), с размерами и разориентировкой блочной структуры (тонкой структурой).  [c.34]


Для изучения дисперсных структур, а также тонких деталей грубых структур (границы зерна, блочное строение и т. д.) в металлографии применяют электронный микроскоп.  [c.38]

По В. П. Батракову (1962 г.), интенсивной линейной локализованной коррозии вследствие приложенных извне или внутренних напряжений подвержены границы зерен или блочных структур, своеобразные группировки атомов по кристаллографическим плоскостям, дислокации и другие искажения кристаллической решетки, находящиеся в активном состоянии.  [c.335]

Процесс проектирования структуры сложного технического объекта представляет собой многоэтапную процедуру, осуществляемую по блочно-иерархическому принципу  [c.305]

Блочная структура обеспечивает гибкую систему управления данными и позволяет получить высокоэффективно выполняемые объектные коды.  [c.348]

Рис 1,10 Схемы строения идеальных (а), реальных (б) кристаллов н блочная структура (е) 20 000  [c.18]

Системы автоматизированного проектирования имеют блочную структуру, т. е. состоят из подсистем, в которых выполняются законченные решения.  [c.52]

С учетом изложенного формирование информационной модели ЭМП в базе данных целесообразно вести по блочному (модульному) принципу, составляя массивы проектных показателей в виде структур из отдельных блоков.  [c.193]

Рис. 32, Схема блочной (мозаичной) структуры зерна [19] Рис. 32, Схема блочной (мозаичной) структуры зерна [19]
Существует еще один источник поверхностного искажения кристаллического строения кристалла. Если рассмотреть зерно при большом увеличении, то окажется, что внутри него имеются участки с размерами 0,1-1 мкм (их называют субзернами), разориентированные друг относительно друга на угол 15-30 (малоугловые границы) Такая структура называется блочной или мозаичной (рис. 32), Свойства металлов будут зависеть как от размеров блоков и зерен, так и от их взаимной ориентации.  [c.49]

Промежуточный Блочно-мозаичные структуры 0,1-1 мкм  [c.107]

ИЕРАРХИЧНОСТЬ СТРУКТУРЫ Многие металлические материалы имеют несколько иерархических структурных уровней блочная структура, зеренная структура, скопления зерен и лр.  [c.200]

Во-вторых, основным методом проектирования сложных систем является блочно-иерархический [171, при котором в процессе проектирования система рассматривается последовательно на разных уровнях иерархии с постепенно нарастающей степенью детализации. При этом анализ процессов теплообмена на каком-либо высшем уровне нужно проводить в условиях, когда внутренняя структура подсистем этого уровня еще детально не определена, и поэтому полную модель нельзя использовать из-за недостатка информации.  [c.6]


Есть еще один источник поверхностного искажения кристаллического строения металла. Если рассмотреть зерно при большом увеличении, то окажется, что внутри его имеются участки разориентированные друг относительно друга на угол 15. ..30. Такая структура называется блочной или мозаичной, а области - блоками мозаики (рис. 5, б).  [c.11]

С ростом числа проходов при прокатке заметно возрастают прочностные характеристики стали и увеличивается ее пластичность. Такое влияние дробной деформации на эффект упрочнения стали при ВТМО обусловлено, в первую очередь, более равномерным деформированием заготовки в этих условиях это приводит к равномерному образованию тонкой блочной структуры в аустените и к более упорядоченному распределению дислокаций в упрочненной стали [101]. Кроме того, обработка стали с применением дробной деформации технологически более удобна и дает меньший разброс механических свойств, чем обычный режим ВТМО [101].  [c.73]

Изменением энергоемкости материала объясняется дополнительное повышение прочности стали при использовании ТМО с применением дробной деформации. В результате такой обработки в стали, подвергнутой высокой степени обжатия за несколько проходов, образуется более тонкая блочная структура и дислокации более равномерно распределяются в объеме, что подтверждается результатами рентгенографического анализа  [c.85]

Сплавы, склонные к коррозии под напряжением, характеризуются по крайней мере двумя анодными кривыми — основным фоном металла и участком, на котором возникает надрез с пиком напряжения, имеющим наиболее высокую скорость растворения. Такими участками могут быть структурные составляющие, границы зерен, блочных структур, кристаллографические плоскости и плоскости скольжения, дислокационные структуры. Наиболее интенсивно коррозия под напряжением развивается, когда надрезы находятся в активном состоянии или в состоянии пробоя.  [c.39]

Полученные данные об относительном физическом ушире-нии и размерах блоков когерентного рассеяния позволяют качественно оценить влияние термической обработки на дислокационную структуру стали. Блочный характер структуры сильнее всего выражен у закаленных образцов. После отпуска распределение дислокаций приобретает более равномерный характер, о чем можно судить по увеличению относительного истинного физического уширения. Равномерность рас-  [c.180]

Блочность структуры. Блочную структуру имеют программы, написанные на языках АЛГОЛ, ПЛ/1 и АДА. В этих языках каждая программа или подпрограмма организуется в виде последовательности вложенных друг в друга блоков, ограниченных специальными указателями (например, в АЛГОЛ — словами begin и end).  [c.348]

Субсгруктура Структура (блочная, тонкая) отдельных зерен металла и сплавов, представляющая собой совокупность субзерен  [c.345]

Таким образом, зерна металла разориентированы относительно друг друга на величину в несколько десятков градусов. Зерна могут состоять из фрагментов, разориёнтированных лишь на несколько градусов. Наконец, фрагменты могут состоять из блоков, разориентированных на очень небольшие углы, — в несколько минут. Такая трехступенчатая структура не обязательна. В ряде случаев зерна могут состоять из фрагментов без внутренней блочной структуры или только из блоков. Термический процесс, вызывающий деление зерна на фрагменты, называется фрагментацией, или полигонизацией.  [c.33]

Рис. 13. Топкая структура малоуглеродистой стали (В. С. Касаткина) а —зерна феррита (утолщенные границы) и фрагменты (тонкие границы). Х250 б-блочная структура зерна феррита (граница фрагментов и блоки). Х16(ХХ) Рис. 13. <a href="/info/1788">Топкая структура</a> <a href="/info/6794">малоуглеродистой стали</a> (В. С. Касаткина) а —зерна феррита (утолщенные границы) и фрагменты (тонкие границы). Х250 б-блочная структура зерна феррита (граница фрагментов и блоки). Х16(ХХ)
Блочные носители (рис. 36) представляют собой спеченные из тугоплавких окислов(окиси алюминия, кордиарита) компактные тела, пронизанные большим числом параллельных сквозных каналов. Сечение каналов обычно прямоугольное или треугольное. Гидравлический диаметр канала — 1. .. 2 мм. Блочная структура носителя существенно снижает газодинамическое сопротивление по сравнению с эквивалент- Рис. 36. Блочный носи-ным по эффективности слоем насыпки гранули- тель катализатора  [c.65]


Разработка АС ТПП г(редполагает общее для всех подсистем информационное, математическое, методическое, организационное, техническое, лингвистическое и программное обеспечение. Кстати, при разработке программ используются как блочная структура построения, так и модульный принцип программирования (библиотека модулей, постоянно дополняется и обновляется).  [c.106]

При синтезе заранее заданы допустимый набор используемых элементов (электрорадиоэлементов при синтезе электронных схем, набор балок и блочных конструкций при проектировании строительных сооружений и т. д.), возможные правила их соединения между собой и способы определения по синтезированной структуре объекта функции, которую он реализует.  [c.261]

Большая размерность задач проектирования сложных технических систем и объектов делает целесообразным блочно-иерархический подход, при котором процесс проектирования разбивается на взаимосвязанные иерархические уровни. Структурный синтез составляет существенную часть процесса проектирования и также организуется по блочноиерархическому принципу. Это означает, что синтезируется не вся сложная система целиком, а на каждом уровне в соответствии с выбранным способом декомпозиции синтезируются определенные функциональные блоки с соответствующим уровнем детализации. Существуют различные способы классификации задач структурного синтеза. Так, в частности, в зависимости от стадии проектирования различают следующие процедуры структурного синтеза выбор основных принципов функционирования проектируемой системы, выбор технического решения в рамках заданных принципов функционирования, выпуск технической документации. В зависимости от типа синтезируемых структур различают задачи одномерного, схемного и геометрического синтеза. В зависимости от возможностей формализации различают задачи, в которых возможен полный перебор известных решений, задачи, которые не могут быть решены путем полного перебора за приемлемое время, задачи по-  [c.268]

Измерительно-вычислительным комплексом (ИВК) принято называть автоматизированное средство измерения, обработки опытных данных и управления ходом эксперимента, представляющее собой совокупность программных и технических средств, имеющих блочно-модульную структуру, и предназначенное для исследования сложных объектов и процессов. Учитывая необходимость промышленного выпуска ИВК, АН СССР и Министерство приборостроения, средств автоматизации и систем управления приняли совместное решение о разработке, промышленном освоении и выпуске ряда ИВК, основанных на использовании малых ЗВМ (СМ-3 и СМ-4), с одной стороны, и аппаратуры КАМАК или измерительных блоков АСЭТ — с другой. Первые наборы таких средств на базе ЭВМ СМ-3, СМ-4 и аппаратуры КАМАК начали выпускаться и поставляться в научно-исследовательские организации в 1978 г. в виде базовых комплексов, ориентированных на общефизические исследования, со следующим назначением ИВК-1 — для автоматизации относительно крупных экспериментальных установок или двух небольших установок ИВК-3 — для автоматизации спектральных (или им подобных) установок ИВК-4 — для автоматизации нескольких экспериментов в масштабе лаборатории. В ближайшем будущем планируется организация выпуска измерительно-вычислительных комплексов ИВК-5, ориентированных на исследования в области ядерной физики и физики высоких энергий, и ИВК-6, в состав которого войдет микро-ЭВМ Электроника-60 , программно-совместимая с мини-ЭВМ СМ-3 и СМ-4. Планируется также выпуск базовых комплексов, содержащих микро-ЭВМ Электроника-60 и один-два крейта КАМАК, для автономных, в том числе перевозимых, систем, предназначенных для автоматизации экспериментов малой и средней сложности.  [c.346]

Поверхностные дефееты кристаллического строения. Поликристалличе-ское строение металлов. Что такое мозаичная (или блочная) структура металлов  [c.149]

Известно, что прочностные свойства металлов зависят не только от параметров структур .1, но также от характера и взаимодействия дефектов различного рода, в первую очередь дислокаций. В основу рентгеновского анализа дислокационной структуры было положено описание дискретно блочного строения и деформаций кристаллической решетки в микрообъемах в дислокационных терминах как неоднородное распределение плотности дислокаций. Следовательно, блоки мозаики можно представить в виде периодической сетки дислокаций со средней длиной волны D. Такое представление имеет физические обоснование, поскол1)Ку границы блоков мозаики содержат дефектные участки недостроенных и деформированных кристаллитов. При оценке плотности дислокаций внутри блоков микродеформации е можно связывать с полем напряжений, создаваемых наличием рассматриваемой неоднородности. Таким образом, определенные при анализе профиля рентгеновских линий параметры О и е позволяют в некотором приближении оценить характер распределения и плотность дислокаций.  [c.173]

Коэрцитивная сила увеличивается с измельчением зеренной и блочной структур металла. Это объясняется тем, что в мелкозеренном материале на единицу объема приходится больше доменов. Вероятность наличия примесей и напряжений вдоль границ зерен и блоков мозаики также увеличивается, что делает материал более магнитнотвердым. Магнитномягкие материалы применяют при изготовлении сердечников трансформаторов и реле, электромагнитов и т. п. Магнитная анизотропия влияет на  [c.64]

По физическому смыслу матрица формы [Ф,] выражает перемещения точек элемента в случае, когда компоненты смещения узла i раины единице ( <=1, Vt==l), а смещения других узлов отсутствуют. В соотношении (19) вектор-строка и вектор-столбец имеют блочную структуру в более комнактнон форме зависимость (19) можно записать следующим образом  [c.554]


Есть основание полагать, что такое специфическое строение границ является результато.м локальных пластических смещений внутри блочной структуры наклепанного аустенитного зерна и диффузионного перемещения сегментированной границы при высокотемпературном нагреве [13]. Ряд исследователей разработал специальные способы высокотеМ Пературной МТО, позволяющие получить структуру стали с развитой зубчатостью границ и тем самым существенно повысить сопротивляемость ползучести [14, 15]. Получаемые искажения в периферийных областях зерна в значительной степени способствуют упрочнению, предотвращают образование фаз, ослабляющих связь между зернами [13, 16], и увеличивают барьерный эффект границ зерен.  [c.14]

При ТМО сталей наблюдается весьма сложное взаимодействие процессов пластической деформации и фазового превращения. Известно, что при пластической деформации в области стабильного аустенита (выше точки Асз) зерна аустенита дробятся на более мелкие и процесс блокообразования протекает более интенсивно. Последующая закалка, при которой температура стали быстро снижается ниже температуры рекристаллизации (чем предотвращается развитие собирательной рекристаллизации), позволяет сохранить блочную структуру деформированного аустенита до начала мартенситного превращения, которое протекает в пределах блочной структуры аустенита. Чем мельче будут получаемые при высокотемпературной деформации блоки в аустените, тем более дисперсной окажется структура мартенсита. Это и понятно, так как в тонкой структуре аустенита с нарушенным строением кристаллической решетки в областях границ блоков имеется большое число центров, энергетически выгодных для образования зародышей кристаллов мартенсита, а это предопределяет развитие тонких мартенситных пластинок. Превращение аустенита в мартенсит сопровождается дальнейшим измельчением областей когерентного рассеивания внутри кристаллов мартенсита до 10 — 10- см [19].  [c.15]

Опыты показывают [16], что в процессе высокотемпературного наклепа обрабатываемой стали деформация локализуется по границам аустенитных зерен, что приводит к их искажению и, как следствие, к изменению конфигурации границ (фиг. 11,а) — возникновению характерной зубчатости [13, 81] с периодом чередования зубцов и их амплитудой порядка десятков микрон (фиг. 11,6). Такое специфическое строение границ зерен после ВМТО связывается [13, 72, 87] с влиянием блочной структуры аустенитного зерна, возникающей в результате деформирования при высоких температурах, и объясняется взаимодействием сдвигового механизма и диффузионного перемещения границ зерен. При этом процесс сдвигообразова-ния, проходящий по сравнительно небольшому числу плоскостей скольжения, приводит к первоначальному раздроблению зерна на блоки с выходом плоскостей скольжения на поверхность зерна (начало искажения границ), а последующее диффузионное перемещение элементов такой сегментированной границы приводит к развитию зубчатости. Этому же способствует анизотропность перемещения элементов искаженной границы [13], поскольку процесс сдвигообразования способствует нарушению единообразной взаимной ориентации сопрягающихся кристаллических решеток.  [c.47]

В некоторых случаях применение обычнТлх способов химического травления не обеспечивает выявления тонкой структуры покрытий. Использование для этих целей метода высокотемпературного вакуумного травления позволило обнаружить в покрытии ПН85Ю15 структуру, напоминающую блочное строение с размером блоков 1—3 мкм (фото 22). Травление осуществлялось на модернизированной установке ИМАШ 9-66 при температуре 950°С в течение 25 мин.  [c.183]

Проявление разнообразных случаев етруктурной коррозии сплавов связано g различными скоробтами раетворения отдельных структурных составляющих, имеющих разный химический состав, а также физически неоднородных участков металла (зерна, границе зерен, блочные структуры, границы блочных структур, кристаллографические плоскости и плоскости скольжения с различными атомными группировками, дислокации к другие дефекты кристаллической решетки).  [c.32]

Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида МегзСб), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, пре-де.л текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной ( решетчатой ) структуры.  [c.71]

В заключение можно назвать основные направления развития пластометрических исследований на ближайшие годы 1) создание новых универсальных многоцелевых пластометров блочного типа, максимально близко моделирующих условия деформации различных процессов ОМД по температурно-скорост-ным условиям, законам развития деформации во времени и схемам напряженного состояния 2) разработка реологических моделей управления качеством металлопродукции для различных процессов ОМД на основе физических моделей течения металла в результате пластометрических исследований 3) соединение пластометрии с металлографией для анализа и контроля изменения структуры металла в процессе горячей деформации 4) проведение пластометрических исследований в особых условиях (вакуум, ультразвуковые, электрические поля и т. д.) 5) автоматизация пластометрических исследований при обработке опытных данных и управлении экспериментом создание автоматизированных комплексов типа пластометр — ЭВМ — графопостроитель или пластометр — УВМ — полупромышленное оборудование (прокатный стан, пресс, молот) 6) накопление, систематизация и формализация результатов пластометрических исследований с целью разработки подпрограмм Реология металлов в система- АСУ ТП и комплексных математических моделях различных процессов ОМД.  [c.68]


Смотреть страницы где упоминается термин Структура блочная : [c.27]    [c.144]    [c.249]    [c.15]    [c.74]    [c.556]    [c.24]    [c.35]    [c.71]    [c.163]   
Основы металловедения (1988) -- [ c.22 ]



ПОИСК



Блочная структура матриц представления группы

Блочная структура электростанции

Выбор паровых котлов ТЭС блочной структуры и основных агрегатов ТЭЦ

Структура металла блочная

Структура металла блочная гексагональная плотвоупакованиа

Структура металла блочная гранецеитрированная

Структура металла блочная кристаллическая

Структура металла блочная кубическая объемноцентрированна

Трещина в среде блочной структуры и в армированном материале



© 2025 Mash-xxl.info Реклама на сайте