Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни Расчет при деформациях упруго

С увеличением размеров и скоростей в современном машиностроении все большее значение приобретает вопрос о расчетах прочности машинных частей. С одной стороны, в связи с увеличением размеров и скоростей увеличиваются и допускаемые напряжения, с другой стороны, к машинам значительных размеров предъявляются более высокие требования прочности, нежели к малым i). Необходимая прочность машин может быть обеспечена только на основе точного исследования распределения напряжений в их частях и изучения механических свойств применяемых материалов. При разрешении вопросов прочности в машиностроении необходимо пользоваться и тем и другим путем. Полное теоретическое решение, которое может быть непосредственно применено к анализу распределения напряжений, можно получить только для простейших случаев, как, например, при деформациях тонких призматических стержней и тонких пластинок. В большинстве критических случаев картина очень сложна, и решение задачи, основанное на упрощающих допущениях, может быть принято для определения напряжений только как первое приближение. Для расширения наших знаний в вопросах о распределении напряжений следует, с одной стороны, развивать методы, которые позволяли бы разрешать задачи теории упругости в сложных случаях, встречающихся на практике, с другой стороны, производить испытания моделей, а также производить измерения напряжений на самих машинах, внимательно изучая при этом всякие неправильности в их работе ).  [c.556]


Из приведенных расчетов видно, что относительное удлинение среднего стержня значительно больше, чем боковых. В процессе деформации средний стержень оказался более напряженным, чем боковые значит, в нем возникло дополнительное напряжение. Так как относительная деформация среднего стержня больше, чем боковых, а его предел упругости ниже, то пластическая деформация его начнется раньше, чем остальных стержней, и может оказаться, что средний стержень начнет пластически деформироваться тогда, когда боковые стержни будут испытывать только упругие деформации. Если мы снимем груз Р, то пластически деформированный стержень III сохранит свою длину, вследствие чего должны сохраниться упругие деформации боковых стержней в системе возникнут остаточные напряжения, сжимающие в среднем стержне и растягивающие в боковых. Закрепление концов стержней мы предполагали шарнирным для упрощения задачи при жестком закреплении стержней неравномерность напряжений возрастает.  [c.46]

Решение задачи неустановившейся ползучести скрученного круглого стержня по теории старения эквивалентно расчету за пределами упругости при нелинейной зависимости между напряжениями и деформациями. Последнее изложено в книге С. Д. Пономарева и др. [120].  [c.230]

Одной из важнейших задач сопротивления материалов является оценка жесткости конструкции, т. е. степени ее искажения под действием нагрузки, смещения связей, изменения температуры. Для решения этой задачи необходимо определить перемещения (линейные и угловые) любым образом нагруженной упругой системы (балки, рамы, криволинейного стержня, фермы и т. д.). Та же задача возникает при расчете конструкций на динамические нагрузки и при раскрытии статической неопределимости системы. В последнем случае, как уже отмечалось, составляются так называемые уравнения совместности деформаций, содержащие перемещения определенных сечений.  [c.359]

В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]


Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

При решении задач 1.1 — 1.82 предполагалось, что деформации стержней весьма малы и схема сооружения практически не изменяется вследствие перемещений. В этом случае получаются линейные соотношения между внешними нагрузками, внутренними усилиями и перемеш,ениями. Ниже приводится ряд задач, в которых необходимо использование нелинейных зависимостей. Во всех задачах материал стержней считается линейно-упругим. Характерные осо-бенности.задач состоят в том, что при их решении а) должны использоваться более точные, чем линейные, соотношения между перемещениями и удлинениями стержней и б) при составлении условий равновесия необходимо учитывать изменение расчетной схемы, вызванное перемещениями. Такие расчеты называются расчетами по деформированному состоянию (по деформированной схеме, деформационными). В следующем параграфе приводятся задачи, связанные с расчетом гибких нитей, относящихся тоже к классу геометрически нелинейных систем.  [c.37]

Применение установленного выше правила, позволяющего определить остаточные напряжения после разгрузки, встречает одно ограничение. В рассмотренном примере Nia > О, а N20 < 0. Может оказаться, что остаточное сжимающее напряжение Л го/ по абсолютной величине больше, чем предел текучести. В этом случае говорят о вторичных пластических деформациях если они появляются, т. е. если в результате расчета оказывается, что какая-то из величин Ok по абсолютной величине превышает о , то все рассуждения, конечно, становятся неверными. Читатель легко убедится сам, что в этом случае правило нахождения остаточных напряжений и деформаций после разгрузки допускает очень простое обобщение. Фиктивные напряжения и деформации, и е ,, нужно вычислять с учетом возможности пластических деформаций, но при удвоенном пределе текучести. Отсюда вытекает простое правило для определения того, появляются ли в системе вторичные пластические деформации. Нужно определить напряжения во всех стержнях нрп Р = Рг в предположении упругости их и проверить, не окажется ли в каком-либо стержне напряжение большим чем 2от.  [c.61]

Образование плато постоянных параметров деформации стержня вблизи конца и примерно постоянная скорость распространения для каждой величины деформации используются для обоснования деформационной теории распространения волн. Эти особенности распространения волны в стержнях установлены экспериментально, и по их выполнению часто делается вывод о чувствительности материала к скорости деформации. В численных расчетах те же особенности получены на основе модели материала, включающей вязкий элемент, т. е. для материала, поведение которого зависит от скорости деформации. Эта чувствительность проявляется наиболее интенсивно на начальной стадии распространения волны и практически исчезает, как следует из рис. 61, при временах, значительно превышающих время релаксации. Поэтому построение кривой деформирования по результатам распространения упруго-пластических волн (например, по скорости распространения деформации [318]) определяет поведение материала не при высокой скорости деформации, а при характерной для определенного сечения.  [c.152]


В инженерной практике встречаются случаи, когда упругая стержневая система контактирует с упругим основанием. Расчет такой системы должен быть дополнен схемой стержня на упругом основании. Наиболее простой и широко применяемой расчетной схемой является модель Е.Винклера - схема с одним коэффициентом постели. Простота этой модели приводит к недостаточной точности получаемых результатов. Поэтому позже бьши разработаны более совершенные и точные модели Здесь отметим модели на основе упругого полупространства [80, 291] (решения получаются весьма громоздкими, а сама методика сводится к набору таблиц, что создает неудобства при ее применении) и модели с двумя коэффициентами постели (проф.П.Л.Пастернак, проф.В.З.Власов, проф.М.М.Филоненко-Бородич [273]).Модель с двумя коэффициентами постели позволяет построить аналитическое решение задачи Коши, учесть деформацию сдвига основания, его неоднородность и много других факторов. В этой связи получим уравнение типа (1.40) для модели с двумя коэффициентами постели. Используя принцип независимости действия сил и дополняя уравнение динамики стержня в амплитудном состоянии на упругом основании слагаемым от продольной силы F v" x), будем иметь  [c.199]

Понятие потери устойчивости не следует отождествлять с понятием потери прочности. Так, например, если в гибком стержне, нагруженном сжимающей силой, превосходящей по величине ее критическое значение, возникают только упругие деформации, то после разгрузки восстанавливается первоначальная прямолинейная форма стержня. Разрушение стержня в результате потери устойчивости в этом случае не произойдет. Однако, в реальных конструкциях критическое состояние недопустимо, поскольку оно, как правило, приводит к разрушению конструкции. При расчете на устойчивость безопасность сооружения обеспечивается введением коэффициента запаса устойчивости.  [c.262]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]

При расчете инженерных сооружений и машинных конструкций приходится иногда определять прочные размеры стержней, подвергающихся действию ударов. На практике задачу эту решают приближенно на основании самых элементарных соображений. Обыкновенно пренебрегают массой системы, испытывающей действие удара, и допускают, что между силой, возникающей в месте удара, и перемещениями, вызываемыми этой силой, существует такая же зависимость, как и при статической нагрузке. В пределах упругости возрастание усилия в месте удара будет сопровождаться пропорциональным ему возрастанием перемещения, и нарастание деформаций длится до тех пор, пока вся живая сила ударяющего тела не обратится в потенциальную энергию деформации.  [c.220]

К недостаткам этих сплавов следует отнести следующие 1) относительно большую стоимость основного металла и сварки, требующей применения инертных газов 2) почти в три раза меньшее значение модуля продольной упругости, что влияет на увеличение упругих деформаций и уменьшает критические напряжения при расчетах устойчивости стержней и балок 3) возможность местной коррозии при контакте со сталью, что требует специальных изолирующих покрытий и прокладок в местах соединений разнородных материалов 4) почти в два раза большее значение коэффициента линейного расширения, приводящее к большим температурным деформациям при сварке 5) низкие значения предела выносливости a i основного металла (у сталей, приведенных в табл. 1.1.1, отношение 0,35, а у алюминиевых сплавов, приведенных в табл. 1.1.8, л 0,14).  [c.20]

Критерии устойчивости, или принципы оценки устойчивости, могут меняться в зависимости от обстоятельств. Поэтому часто, чтобы отвлечься хотя бы терминологически от расчетной схемы, употребляют термин сила выпучивания. Это — сила, при которой возникают заметные отклонения от исходного состояния равновесия. Критическая же сила — это понятие, свойственное избранной расчетной схеме идеального стержня. Даже при чисто упругих деформациях сила выпучивания и критическая-сила — не одно и то же. Ведь в расчете по Эйлеру было принято, что стержень идеален, однороден и не имеет начальной погиби. А в реальных условиях этого нет, сколь бы точно не изготовлялся стержень. Поэтому при испытаниях сжатого стержня фактически измеряется не критическая сила, а сила выпучивания, которая лишь близка по своему значению к критической.  [c.157]

Выше отмечалось, что в случае неравномерного распределения по торцам нормальных сил сечения перестают быть плоскими (деплакируют). Однако на большей части длины стержня, за исклю чением частей, примыкающих к торцам, сечения практически остаются плоскими. Если к промежуточному поперечному сечению стержня приложена неравномерно распределенная нагрузка, сводящаяся к силе, действующей вдоль его оси, то заметные отклонения от плоской формы сечений наблюдаются и вблизи этого промежуточного сечения. Возмущения имеются в районах изменения сечений, в том числе — ослаблений. Однако при,сравнительно небольшом удалении от всех этих мест возмущений поперечные сечения стержня при деформации практически остаются плоскими. Поэтому можно принять упрощающую расчет гипотезу о том, что при растяжении или сжатии стержней поперечные сечения, плоские до деформации, остаются плоскими и параллельными друг другу и после деформации. Эта гипотеза носит название гипотезы плоских сечений (гипотеза Мариотта — Бернулли) ). Применительно к телам, имеющим форму брусьев, в сопротивлении материалов она заменяет собой условия совместности деформаций, используемые при решении задачи о распределении напряжений в более точной науке — в теории упругости. Такая замена, естественно, приводит к искажению истинной картины распределения напряжений, ощутимому лишь в указанных выше областях.  [c.97]


Обсуждение статической неопределимости закона распределения напряжений по поперечному сечению стержня показало, что при наличии в стержне отверстий, выточек и тому подобных нерегулярностей формы возникает резкая неравномерность распределения напряжений со значительными пиками вблизи указанных нерегулярностей. Это явление носит па. атптконцгнтрации напряжений. Оно обнаруживается не только при осевой, но и при всех других видах деформации стержня, а-также при деформации элементов любой формы (не только стержневых). С этим явлением приходится считаться как при конструировании элементов конструкций и деталей машин, так и при расчете их. Выявить распределение напряжений с учетом их концентрации можно двумя путями теоретическим и экспериментальным. Теоретический путь основан на применении теории сплошных сред (теории упругости, теории пластичности, теории ползучести — в зависимости от свойств материала), в которой вместо гипотез геометрического характера используются дифференциальные уравнения совместности деформаций, а равновесие соблюдается для любого бесконечного малого элемента тела, а не в интегральном (по поперечному сечению) смысле, как это делается в сопротивлении материалов.  [c.99]

Эти уравнения позволяют определить (с учетом пластического течения элемента 2) закономерности изменения безразмерных усилий и деформаций стержня -при колебаниях температуры. Расчет начинается с нулевого полуцнкла (первый нагрев). Вначале деформации упругие, и из приведенных уравнений сохраняют свое значение только два—(7.36) и (7.37), причем ср = бр = 0. Определяемые из этих уравнений функции y=y Q) и  [c.230]

Циклические ползучесть и релаксация. При выводе уравнений состояния (7.38)—(7.40) игнорировалось различие диаграмм деформирования реономных и склерономных стержней. Получаемая ошибка, малозаметная в каждом этапе нагружения, в определенных условиях может накапливаться. Например, циклическое несимметричное нагружение в соответствии с указанными уравнениями дает замкнутую (неподвижную) петлю пластического гистерезиса фактически часто наблюдается постепенное сползание петли вследствие реономности материала — в зависимости от условий возникают эффекты, называемые циклической ползучестью (задаются напряжения) или циклической релаксацией (задаются деформации). При непосредственном расчете кинетики деформаций в стержнях модели (без использования допущений, принятых при выводе указанных уравнений состояния) эти эффекты находят отражение. Однако можно воспользоваться уже рассмотренными методами анализа (исследование эпюр распределения упругих деформаций) для получения асимптотических решений в общей форме, т. е. определения границ сползания петель гистерезиса, если они существуют, и определения условий, в которых циклическая ползучесть происходит неограниченно (вплоть до ква-зистатического разрушения).  [c.210]

Практическая важность угих глав обусловлена необходимостью обеспечения той раиновеснои формы упругой системы (сжатых стержней или иластии, балок на жестких или упругих опорах, цилиндрических оболочек и др.), которая принята конструктором в качестве исходной при расчете соответствующей деформации (сжатия, кручения или изгиба). Превышение так называемых критических, пли эйлеровых, нагрузок, вызванное нарушением расчетной схемы, может привести к аварийным ситуациям и к разрушению корпуса. В связи с этим большое значение приобретает правильное определение критических (эйлеровых) напряжений, позволяющих с учетом необходимого запаса прочности, который, в свою очередь, завпсит от достоверности знания внешней нагрузки, точности расчег-ных формул, уверенности в механических качествах материала и тщательности выполнения конструкции, назначить допускаемые напряжения.  [c.47]

Формула (8.9.13) строго соответствует условию недеформируемости сечения стержня в своей плоскости, однако на практике она обычно используется для коротких стержней, а, также в случае, ковда жесткость контура сечения обеспечивается упругим заполнителем, поперечными ребрами или стенками. При расчете длинных пустотелых стержней обычно учитывают деформацию контура сечения, связанную с эффектом Пуассона. При этом вместо формулы (8.9.13) используют следующую  [c.73]

При одноосном напряженном роетоянии (стержни) расчеты на устойчивость можно производить, пользуясь тем или иным критерием и диаграммой растяжения материала. При двухосном напряженном состоянии (пластины, оболочки) этого оказывается недостаточно. В этом случае необходимо иметь зависимость между напряжениями и деформациями за пределом упругости. Эти зависимости определяются теориями пластичности. Все известные теории пластичности относятся или к деформационным теориям или к теориям течения. В деформационных теориях устанавливаются связи непосредственно между напряжениями и деформациями, а в теориях течения — между малыми приращениями деформаций и напряжений и напряжениями. Из дефор. мационных теорий наибольшее распространение получила теория малых упруго-пластических деформаций, развитая Генки  [c.303]

Расчет на прочность опорных рам, порталов и оголовков башен ведут по недеформированной схеме. Расчет на прочность стрел (см. п. 111.12) и башен следует проводить деформационным методом с учетом начальных несовершенств (см. п. 111,3). Согласно приложению 4 к ГОСТ 13994--8I, башни рассматривают как консольные стержни. Для башен свободно стоящих кранов и консольных частей башен приставных кранов при изгибе из плоскости подвеса стрелы учитывают деформационные моменты первого и второго порядков — см. формулу (III. 1.59) При деформации в плоскости подвеса стрелы для башен и из пло скости подвеса стрелы для частей башен приставных кранов расположенных ниже верхнего крепления к зданию, деформа ционный MOM Hf принимают , 2АМ, где AM — момент пер вого порядка, создаваемый продольными силами за счет дефор маций, вычисленных без учета продольных сил. Определение ординат упругих линий башен дано в работах [0.7, 12].  [c.484]

Порядок расчета стержня на растяжение при сг,, = onst виден на рис. 2.2, б. Если требуется проследить процесс увеличения деформаций н перераспределения напряжений по мере изменения нагрузок и температур, то- проводят серию подобных расчетов. При этом в качестве исходных значений пара.метров упругости для нового этапа можно брать их окончательные значения для предыдущего-этапа нагружения.  [c.140]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Следует отметить, что формулы (5 (5.6) выведены в предположении, что стержень растянут силами, равномерно распределенными по с чен1 ю (ндпрл-мер, торцовому, рис. 5,6, а). При растяжении сосредоточенными силами, как показывают эксперименты и расчеты методами теории упругости, -сеченн стержня вблизи мест приложения внешних сил в результате деформации искривляются (рис. 5 6, б), возникают большие местные деформации и напряжения.  [c.39]

При термопластичном упрочнении боковые стержни нагревают до-появления остаточных деформаций растяжения в среднем стержне. После остывания в среднем стержне возникают напряжения сжатия система оказывается целесообразно преднапряженной. При упругом упрочнении натягивают боковые стержни или - увеличивают длину среднего Стержня против номинальной с таким расчетом, чтобы при Сборке в нем возникли напряжения сжатия. ,.  [c.403]

Для поступательной кинематической пары с контактом звеньев по плоскости (рис. 23.4) определение контактной деформации сводится к расчету деформации изгиба стержня I на упругом основании 2, рассматриваемой в курсе сопротивления материалов. При сплошной массивной конструкции элемента звена 2 распределение нагрузки определяется контактной жесткостью поверхностей и может быть принято равномерным на участке аЬ (рис. 23.4, а). Если конструкция элементов позволяет им деформироваться, то нзгиб-ная деформация элемента 2 приведет к перераспределению нагрузки и смещению равнодействующей (рис. 23.4, б, в).  [c.296]

При работе стержня в упругой стадии величина продольной деформации весьма мала еще меньше величина поперечной деформации. Поэтому при расчетах считают поперечные размеры неизменя-ющимися (принцип начальных размеров).  [c.214]

В трудах советских ученых А. А. Ильюшина [34], [35], В. В. Соколовского [78] и зарубежных исследователей получили решение многие актуальные и интересные задачи, однако наряду с более или менее строгими решениями в теории пластичности находят приложение и прикладные инженерные методы, успешно разрабатываемые А. А. Гвоздевым [26], А. Р. Ржаницыным [74], А. А. Чирасом [85] и др. Большой вклад в развитие приближенных решений внесен Н. И. Безуховым. Одна из первых его работ [9] по расчету конструкций из материалов, не следующих закону Гука, по глубине обобщений и по достигнутым результатам стала классическим исследованием, наложившим существенный отпечаток на развитие прикладных методов теории пластичности. Большой интерес представляет также и работа [10], в которой был предложен эффективный прием определения деформаций стержней при упруго-пластическом изгибе.  [c.172]

График зависимости безразмерного момента MJM от безразмерной кривизны So = v.h представлен на рис. 3.6.2. При < 7зМт материал остается упругим, при = 7зЛ/., появляется пластическая деформация в крайнем волокне. Это состояние (точка А) признается опасным при расчете по допускаемым напряжениям. Но при этом несущая способность еще не исчерпана. Максимальная возможная несущая способность стержня, т. е. величина предельного момента, выше чем момент, соответствующий точке А, на 50%. Но, как видно из графика и из формулы (3.6.3), это предельное значение момента будет достигнуто тогда, когда кривизна станет бесконечно большой, что невозможно. Получен-  [c.92]

За исключением частных случаев (например, продольного соударения тонких стержней), воздействие импульсной нагрузки создает в материале напряженное состояние, характеризующееся высоким уровнем средних напряжений сжатия или растяжения (последнее во взаимодействующих волнах разгрузки). Можно пренебречь сопротивлением материала сдвигу при высоких давлениях и принять систему напряжений эквивалентной гидростатическому сжатию, что допускает решение ряда задач (например, задачи расчета начальной стадии высокоскоростного взаимодействия твердых тел [252—255]) методами гидродинамики. Для таких расчетов достаточно использовать уравнение состояния вида F p, гу, Т)=0, однозначно связывающее среднее напряжение (давление), объемную деформацию ev и температуру Т. Это уравнение пригодно для описания поведен ия жеталлических твгатерй лев, - ъемиая- -деформация-которых является упругой и, следовательно, не зависит от режима нагружения и его истории.  [c.10]

Рассмотрим вначале случай применения стальных винтовых пружин. Хотя эта задача является достаточно старой и известной, но она была удовлетворительно решена только недавно. Основу расчета разработал Р. Граммель [86], а правильные результаты получил Дж. А. Харингс [91]. Оба автора исходили из предположения, что цилиндрическая пружина относительно длинная обладает свойствами упругого стержня, эквивалентная жесткость которого при сжатии, изгибе и сдвиге вычисляется по произведенной работе деформаций. При одном витке пружины, которая находится под действием осевой силы Р, изгибающего момента М и поперечной силы Q (фиг. 86) Р. Граммель получил следующее выражение работы деформации  [c.205]

Вообще говоря, зависимость I (tf) на изотерме имеет, конечно, более сложный характер. Однако с точностью, вполне достаточной для выполнения подавляющего большинства ответственных прочностных расчетов, оправдывается закон Гука — наиболее простое уравнение изотермы упруго деформируемого стержня. Иными словами, для подавляющего большинства материалов модуль Юнга Е при Т = onst сохраняется постоянным при любых значениях упругих деформаций е. (Понятно, что линейная зависимость может быть справедливой лишь для малых деформаций. Однако поскольку для большинства веществ лишь малые деформации являются упругими, уравнение (10-16) оказывается тем самым справедливым для любых упругих деформаций следовательно, отпадает необходимость в использовании более сложных степенных зависимостей.) Вместе с тем следует отметить, что для некоторых материалов, таких как камень, бетон, чугун и в особенности ряд пластмасс, Е заметно меняется с изменением е. В дальнейшем, однако, мы будем считать, ч чэ величина Е не зависит от е.  [c.205]

При определении частот и форм низших тонов свободных колебаний больших ракет-носителей применяют балочную схематизацию. Корпус представляется в виде прямой неоднородной балки (стержня) с упругоподвешенными грузами, колебания которых имитируют колебания жидкости в баках. Для расчета частот свободных колебаний жидкости в баках ракеты при поперечных движениях стенки бака обычно принимают жесткими, а при продольных движениях — упругими, поскольку в этом случае деформации стенок бака оказываются существенными.  [c.15]

Для других случаев концентрации напряжений используются в основном приближенные способы, основанные на применении соответствующих кинематических гипотез или численных методов (метод уттругих решений, конечно-элементный метод, метод интегральных уравнений и др.). Однако указанные способы применяют в основном в исследовательских, а не инженерных целях, поскольку решение многих задач для различных режимов эксплуатации в случае статического, и особенно циклического нагружения конструкций требует значительного машинного времени и большого объема исходной информации. Получаемые при этом результаты примени.мы для конкретных конструкций, материала и уровня нагрузок. Практика инженерных расчетов базируется в основном на применении задач теорий упругости пластин, оболочек и стержней или на использовании результатов прямого экспериментального изучения местных напряжений и деформаций. Последнее, как известно, применяется для весьма ответственных машин и конструкций в силу сложности и трудоемкости экспериментов по анализу процессов эксплуатационного нагружения.  [c.69]

Рассмотрим сначала особенности напряженного состояния и концентрации напряжений около отверстий. Такой концентратор, имеюпщй конструктикное или технологическое назначение, встречается во многих деталях машин (пластинах, стержнях, оболочках, дисках и т. п.). Вопросам расчета концентрации напряжений около отверстий посвящено большое число работ. Однако наиболее полно эта задача решена в упругой постановке, менее детально — в упруго-пластической области и к условиях ползучести. Поэтому основное внимание уделим концентрации напряжений в пластинах с отверстиями при упруго-пластических деформациях и деформациях ползучести при простом и сло кном нагружениях. Упругие решения приведем лишь для сравнения.  [c.85]

В задаче устойчивости круговой замкнутой цилиндрической оболочки в условиях ползучести при действии продольной сжимающей нагрузки для расчета критического времени необходимо задать некоторый начальный прогиб. В работах Френча и Пателя, Самуэлсона, Хоффа [240] задается осесимметричный периодический по длине оболочки начальный прогиб. В течение всего процесса ползучести в возмущенном движении оболочка остается осесимметричной, й критическое время (в геометрически линейной постановке) определяется обращением прогиба в бесконечность. В уравнениях, описы-вгиощих ползучесть, Хофф в работе [240], как и в большинстве своих работ, не учитывал упругих деформаций. Зависимость критического времени от амплитуды нач-ального прогиба для двухслойной модели оболочки, как и в задачах выпучивания стержней, носит логарифмический характер, В работах последнего времени [242] Хофф предложил учитывать влияние упругой деформации на критическое время с помощью приближенной формулы  [c.276]


Излагается теория малых продольных, крутильных и поперечных колебаний. Выводится дифференциальное уравнение поперечных колебаний с учетом поперечного сдвига и инерции вращения, которое более известно по публикации 1921 года на английском языке. Это уравнение сыграло огромнз роль в теории колебаний упругих систем и известно в литературе как уравнение Тимошенко, а уравнения этого вида для пластин и оболочек как уравнения типа Тимошенко. Приводится решение этого уравнения для случая собственных колебаний. Затем дается изложение результатов автора в области применения тригонометрических рядов и энергетического метода для решения задачи о поперечных вынужденных колебаниях опертого по концам стержня, а также о колебаниях стержня на упругом сплошном основании. Приводится приближенное решение задачи о колебаниях стержней переменного сечения и его сравнение с точным решением. Особенно интересен приведенный здесь результат решенной ранее автором задачи о расчете балки на поперечный удар. При этом в отличие от классической известной схемы учитывались местные деформации балки в зоне удара грузом, в связи с чем появилась возможность определить закон изменения давления в месте удара, а также время соударения.  [c.6]

При решении ряда технических вопросов прочности приходится иметь дело с задачами динамики. Например, при расчете многих машинных частей, участ-вуюпцих в движении, приходится принимать во внимание силы инерции. И напряжения, вызываемые этими силами, иногда во много раз больше тех, которые получаются от статически действующих нагрузок. Такого рода условия мы имеем при расчете быстровращающихся барабанов и дисков паровых турбин, шатунов быстроходных машин и паровозных спарников, маховых колес и т. д. Решение таких задач может быть выполнено без особых затруднений, так как здесь деформации не играют роли мы можем при подсчете сил инерции рассматривать тела как идеально твердые и потом, присоединив найденные таким путем силы инерции к статическим нагрузкам, привести задачу динамики к задаче статики. Эти задачи достаточно полно были рассмотрены в курсе сопротивления материалов, и мы на них здесь останавливаться не будем, а перейдем к другой группе вопросов динамики — к исследованию колебаний упругих систем под действием переменных сил. Мы знаем, что при некоторых условиях амплитуда этих колебаний имеет тенденцию возрастать и может достигнуть таких пределов, когда соответствующие ей напряжения становятся опасными с точки зрения прочности материалов. Выяснению таких условий, главным образом по отношению к колебаниям призматических стержней, и будет посвящена настоящая глава. Как частные случаи рассмотрим деформации, вызываемые в стержнях внезапно приложенными силами, и явление удара.  [c.311]

Авторы излагают теорию напряженно-деформированного состояния, я ыБают отдельное и суммарное действия изгиба, кручения и растяжения упругих стержней. Они рассматривают статическое приложение сил и действие ударного нагружения, освещают вопросы изгиба стержней несимметричного поперечного сечения, в частности определения напряжений в тонкостенных несимметричных профилях. Особое внимание уделяется теории изгиба стержней при неупругих деформациях. Целая глава отводится расчету статически  [c.6]


Смотреть страницы где упоминается термин Стержни Расчет при деформациях упруго : [c.2]    [c.7]    [c.5]    [c.183]    [c.45]    [c.21]    [c.70]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]



ПОИСК



660 — Расчет упругие

Деформация упругая

Расчет стержней при упруго-пластических деформациях

Стержень — Расчет

Стержни Деформации

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте