Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение упругое

Бесконечно длинная балка из упруго-пластического материала, но без упрочнения (упругая жесткость сечения /, предел текучести материала балки От) покоится на линейно-несвязанном упругом основании (коэффициент постели с) и нагружена в средней части сосредоточенной силой Р (рис. 157). Определить, при каком значении силы Р и где по длине балки образуется первый пластический шарнир, при какой нагрузке и в каком сечении образуется второй пластический шарнир, и т. д.  [c.272]


При построении кривой упрочнения упругой составляющей деформации пренебрегают.  [c.13]

На фиг. 14 показаны экспериментальные точки и расчетные кривые (сплошные) для медных и стальных образцов различных классов чистоты обработки. Как видно из фиг. 14, площадь контакта значительно возрастает с увеличением чистоты обработки. Характер приведенных кривых показывает, что расчет удовлетворительно совпадает с экспериментом. Применительно к инженерным задачам следует учитывать чистоту поверхностей, механические свойства материалов и прикладываемые нагрузки определять преобладающий вид деформации, а именно пластический, упруго-пластический (без упрочнения), упругий, пластический с упрочнением. В зависимости от характера деформаций неровностей применять одну из приведенных выше формул.  [c.56]

Если при данной температуре (может быть, и лежащей выше температуры рекристаллизации) значение напряжения ниже предела упругости металла при данной температуре, то очевидно, что напряжение вызовет только упругие деформации. Если нет пластической деформации, то нет упрочнения, разупрочнения и ползучести.  [c.455]

Вследствие упругого взаимодействия между дислокациями сопротивление их движению сильно возрастает и для их продвижения внешнее напряжение должно резко возрасти (стадия // упрочнения). Под влиянием все возрастающего наиряжения развивается поперечное скольжение винтовых дислокаций, т. е. скольжение с переходом из одной разрешенной плоскости скольжения в другую. Это приводит к частичной релаксации напряжений, аннигиляции отдельных дислокаций разного знака и группировке дислокаций в объемные ячейки, внутри которых плотность дислокаций меньше, чем в стенках ячеек. Наступает /// стадии деформации, когда происходит так называемый динамический возврат, который приводит к уменьшению деформационного упрочнения.  [c.46]

Если пренебречь упругими деформация.ми, то коэффициент деформационного упрочнения К tg а (5ц ., )//, .  [c.64]

При образовании зон ГП, расстояние между которыми составляет около Ю " нм, дислокации проходят через них (перерезают), что требует повышенных напряжений (рис. 67, а). Зоны ГП имеют модуль сдвига больше, чем у исходного твердого раствора а. Чем прочнее зоны ГП и больше их модуль упругости, тем труднее они перерезаются дислокациями. Вокруг зон ГП создается зона значительных упругих напряжений, в которой движение дислокаций также тормозится, что, следовательно, определяет упрочнение при старении.  [c.109]


Однако к недостаткам Т1 следует отнести низкий модуль упругости, т. е. непригодность его для жестких конструкций. Упрочнение Т1 осуществляется наклепом, легированием и термообработкой.  [c.224]

Возникновение умеренных остаточных деформаций не вызывает, опасности, если нагрузка статическая и деформация детали не влияет на работу узла п смежных деталей. Напротив, при известных условиях они способствуют упрочнению детали. Степень упрочнения зависит от соотношения между пределом прочности и пределом упругости материала (или близким к последнему пределом текучести 00,2). Отношение 00,2/03 имеет малую величину у мягких и пластичных материалов и повышается с увеличением предела прочности, достигая 0,85—0,95 для высокопрочных сталей. Таким образом, степень упрочнения может быть значительной лишь для пластичных материалов возможности упрочнения пластической деформацией прочных сталей невелики.  [c.207]

На практике работоспособность соединений, особенно при циклической нагрузке, определяется преимущественно напряжениями смятия, что объясняется различными условиями работы шлицев при смятии и изгибе. Напряжения смятия, сосредотачивающиеся на наиболее нагруженных участках шлицев, вызывают местный наклеп, появление неровностей, сопровождающееся дальнейшим возрастанием очаговых нагрузок и приводящее в конечном счете к свариванию соединения. При изгибе же перегруженные шлицы упруго деформируются, что способствует передаче нагрузки на остальные, менее нагруженные шлицы и упрочнению соединения.  [c.262]

Повышение предела пропорциональности и уменьшение пластичности материала образца при вытяжке его за предел текучести называют наклепом. Упрочнение стали при помощи наклепа используют при изготовлении проволочных канатов, грузовых цепей и т. д. Для придания медным листам упругих свойств и твердости их подвергают прокатке в холодном состоянии.  [c.136]

Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более медленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образовываться так называемая шейка — местное сужение образца (рис. 44).  [c.53]

Сопоставление диаграммы сдвига с диаграммой растяжения для одного и того же материала показывает их качественное сходство. На диаграмме сдвига также имеется упругая зона, зоны текучести и упрочнения.  [c.81]

При повторной нагрузке точка С характеризует переход от упругого состояния к пластическому. Соответствующее напряжение a — a t называется местным пределом текучести. Процесс увеличения местного предела текучести называют упрочнением, или наклепом.  [c.40]

Упорядочение магнитное 342 Упрочнение кристаллов 134 Упругие волны 143 Уровень Ферми 177, 248, 252  [c.384]

При напряжениях, лежащих ниже приложенного, и при температуре ниже 400°С будет только упругая деформация. Ползучесть сопровождается двумя взаимно противоположными процессами упрочнением и разупрочнением. Упрочнение (нагартовка) возникает в результате пластической деформации, а разупрочнение - в результате рекристаллизации. Температура рекристаллизации является температурной границей, выше которой наиболее полно проявляется ползучесть.  [c.107]

Создание жаропрочных сплавов для работы при температурах 1300 - 1800°С возможно в результате дисперсного упрочнения тугоплавкими тонкодисперсными оксидами. Так, вольфрам упрочняют диоксидом тория молибден - диоксидом циркония цирконий -оксидом иттрия и т.д. Разработаны сплавы системы W - Мо, W - Мо - Re с диоксидом тория, которые обладают высокими значениями прочности, жаропрочности и модуля упругости (см. табл. 26).  [c.415]

Рассмотрим изгиб бруса прямоугольного сечения из материала, упрочняющегося по линейному закону, при модуле упрочнения Ет- Распределение напряжений по сечению бруса показано на рис. 72. Для границ упругой зоны имеет место зависимость  [c.122]


Отрезок ВС показывает, насколько напряжение в упругопластическом стержне меньше напряжения в упругом стержне при одном и том же значении деформации. Таким образом, функция со (е) характеризует степень упрочнения материала.  [c.311]

В редких случаях, как, например, для стержня, поперечное сечение которого имеет форму круга или очень вытянутого прямоугольника, прп некоторых законах упрочнения достаточно просто можно получить аналитическое решение поставленной задачи. Во всех других случаях может быть найдено только приближенное решение, что, в частности, можно сделать с помощью метода упругих решений.  [c.320]

Истинное поведение материала характеризуется либо диаграммой идеально упруго-пластического материала, либо диаграммой с упрочнением при однократном загружении конструкции.  [c.172]

Рассмотренную выше задачу можно решить и с учетом упрочнения материала, которое характеризуется параметром упрочнения а, определяющим наклон диаграммы растяжение-сжатие за пределом упругости (рис. 101). Введем основные допущения  [c.188]

Изучение кристаллического состояния является всего лишь первым шагом в исследовании поведения твердых тел. Обычно встречающиеся металлы и сплавы не являются совершенными кристаллами даже монокристаллы могут обладать пороками, сильно влияющими на их свойства, а спектроскопические чистые металлы представляют собой очень сложные структуры. Вследствие чрезмерной близости многих соседей атом или молекула металла в конденсированном состоянии подвергаются действию силового поля нескольких электронных оболочек, в результате чего ок не находится в термодинамическом равновесии со средой. При совершенно определенных условиях температуры и давления чистые металлы могут обладать различными свойствами, существенно зависящими от их предварительной обработки. Это особенно относится к механическим свойствам, в высшей степени зависящим от структуры. Так, например, в зависимости от структуры, полученной при обработке, определенные сорта марганцовистой стали могут быть вязкими, дуктильными и немагнитными или же твердыми, хрупкими и магнитными. Такие термины, как закалка старением, дисперсионная закалка. Механическое упрочнение, упругая деформация и рекристаллизация, легко напоминают многие явления, с которыми металлист встречается при различной обработке металлов.  [c.164]

При трансляционном упрочнении упругая область в пространстве напряэюений  [c.397]

Результатом упругой и пластической деформации материала обрабатываемой заготовки является упрочнение (наклеп) поверхностного слоя. При рассмотрении процесса стружкообразова-ния считают инструмент острым. Однако инструмент всегда имеег радиус скругления режущей кромки р (рис. 6.12, а), равный при обычных методах заточки примерно 0,02 мм. Такой инструмент срезает с заготовки стружку при условии, что глубина резания / больше радиуса р. Тогда в стружку переходит часть срезаемого слоя металла, лежащая выше линии D. Слой металла, ( оизмеримын с радиусом () и лежащий между линиями АВ и D упругоиластически деформируется. При работе инструмента значение радиуса р быстро растет вследствие затупления режущей кромки, м расстояние между линиями АВ и D увеличивается.  [c.267]

Для некоторых металлов (например алюминия, титана, монокристаллов молибдена и вольфрама) в процессе возврата и поли-гопизации происходит заметное понижение прочности и повышение пластичности. Однако их жаропрочные свойства при этом повышаются. У меди, никеля и их сплавов на определенной стадии поли-гонизации твердость, пределы текучести, упругости и выносливости, а также пластичность повышаются. Одновременно сиижаючся неупругие эффекты. Упрочнение происходит в результате закрепления подвижных дислокаций атомами примесей в дислокационных стенках, возникающих при полигонизации, ( ,е([)ормировациого металла.  [c.54]

Эффективен наклеп в напряженном состоянии, представляющий собой сочетание упрочнения перегрузкой с наклепом. При этом способе деталь нагружают нагрз зкой того же направления, что н рабочая, вызывая в материале упругие пли упруго-пластические деформации. Поверхностные,слои металла, подвергающиеся действию наиболее высоких напряжений растяжения (случай изгиба) или сдвига (случай кручения), подвергают наклепу (например, дробеструйной обработкой). После снятия нагрузки в поверхностном слое возникают остаточные напряжения сжатия, гораздо более высокие, чем при действии только перенапряжения или только наклепа.  [c.320]

Ниже рассмотрены способы упрочнения, основанные на создании в системе напряжений, обратных по знаку рабочим (преднапряженные конструкции). Различают два основных способа — упругое и. пластическое упрочнение.  [c.395]

При упругом упрочнении системе заранее придают Деформации, противоположные деформациям при рабочем нагружении. Классическим примером этого способа упрочнения являются шпренгельиые балки (рис. 270, л). В систему вводят т е п з о р ы 7 — стержни из высокопрочного материала. Натягивая стержни, в балке создают предварительные напряжения (рис. 270, б) па стороне, ближайшей к стержням — напряжения сжатия (—), а на противоположной стороне — напряжения растяжения (+). Приложение рабочей нагрузки Рр ,а вызывает напряжения обратного знака (рис. 270, в). Сложение предварительных и рабочих напряжений существенно уменьшает конечные напряжения в балке (рис. 270, г). Напряжения растяжения в стержнях возрастают. <  [c.395]

Другой пример упругого упрочнения — скрепление резервуаров, выполненных из легких сплавов путем намотки стальной проволоки (или ленты) в один или несколько рядов (рис. 271,п — б). При намотке в стенках сосуда создаются напряжения сжатия (г), которые, вычитаясь из напряжений растяжения, возникающих под действием внутреннего давления ( , значительно уменьшают конечные напряжения в стенках сосуда (е). Напрд-  [c.395]


Разновидностью упругого упрочнения является скрепление ролых толстостенных цилиндрических деталей подверженных Действию высокого внутреннего давления. В данном случае не обязательно, чтобы скрепяя-тощие элементы превосходили по прочности скрепляемые эффект упроч , нения здесь основан на своеобразном распределении напряжений по сечению детали.  [c.397]

При упрочнении конусных деталей, нагруженных осевой силой, к детали прилагают перегрузочную силу Р (рис, 273, о), под действием которой верхний фланец подвергается сжатию, а низший — растяжению в- раднад пых направлениях. Силу Р выбирают так, чтобы напряжения во флащшк превосходили предел текучести материала. После снятия перегрузки стенкИ конуса, упруго расправляясь, растягивают пластически сжавшийся верхний фланец и стягивают пластически раздавшийся нижний фланец, вызывая в первом остаточные напряжения растяжения, а во втором — сжатия (рис. 273, п).  [c.399]

При упрочнении диск подвергают нагреву с периферии (рис. 276, л). Температуру нагрева и градиент температуры по радиусу диска выбирают так, чтобы вызвать во внутренних холодных слоях остаточные деформации растяжения. После охлаждения растянутые слои сжимаются упругим действием наружных слоев во внутренних слоях возникают преднапряже-ния сжатия, в наружных — растяжения (рис. 276,. и). При действии рабочей нагрузки (рис. 276, л) остаточные и рабочие напряжения алгебраически складываются результирующие напряжения (рис. 276, о) имеют меньшую величину II распределены более благоприятно, че.м в случае диска, не подвергнутого упрочнению.  [c.402]

При термопластичном упрочнении боковые стержни нагревают до-появления остаточных деформаций растяжения в среднем стержне. После остывания в среднем стержне возникают напряжения сжатия система оказывается целесообразно преднапряженной. При упругом упрочнении натягивают боковые стержни или - увеличивают длину среднего Стержня против номинальной с таким расчетом, чтобы при Сборке в нем возникли напряжения сжатия. ,.  [c.403]

Вывести закон упругого упрочнения ai = Eei, используя выражения для интенсивностей напряжений и деформаций и обобщенный закон Гука для изотропного тела. Указать пределы применимости этого закона, используя критерий пластичности Мнзеса.  [c.130]

В действительности для большинства реальных материалов в малой области конца разреза из-за больших напряжений возникает лона проявления нелинейных свойств материала, в которой раснродолония напряжений и смещений отличаются от упругого. В схеме квазихрупкого разрушения (Орован, Ирвин) принимается, что зона нелинейных эффектов мала по сравнсггию с длиной треицты. Это позволяет считать, что и размер данной зоны, и интенсивность пластических деформаций в ней целиком контролируются коэффициентом интенсивности напряжений, пределом текучести и коэффициентом упрочнения, а поле напряжений вокруг пластической области описывается асимптотическими формулами.  [c.25]

На подвижность дислокаций может оказывать влияние ряд факторов. Одцдм из существенных факторов, влияющих на упрочнение, ЯЕЛяется упругое взаимодействие между дислокациями, на что указывает быстрый рост упрочнения с увеличением плотности дислокаций. Так, плотность дислокаций с ростом деформации изменяется от 10 °—10 2 м-2 в недеформированных металлах, до lO s—10 м 2 —в сильно уирочнеиных деформацией металлах.  [c.135]

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаггий только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-  [c.19]


Смотреть страницы где упоминается термин Упрочнение упругое : [c.433]    [c.551]    [c.8]    [c.395]    [c.401]    [c.412]    [c.35]    [c.253]    [c.96]    [c.132]    [c.65]    [c.334]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.0 ]



ПОИСК



Упрочнение



© 2025 Mash-xxl.info Реклама на сайте