Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения геометрические в в напряжениях

В. Г. Шухов предложил определить места выключения связей, исходя из простого геометрического рассмотрения системы при различных загружениях и в зависимости от местоположения примыканий наклонных тяг к арке. В результате этого рассмотрения из системы исключались лишние связи. Затем для определения растягивающих усилий в тягах можно также на основе геометрических пропорций составить уравнения моментов в количестве, равном числу оставшихся растянутых связей или количеству неизвестных. Получение таким образом во всех тягах растягивающих усилий является подтверждением правильности определения места выключения связей. После определения усилий в тягах можно вычислить момент в произвольном сечении верхнего пояса, составив уравнение моментов относительно этого сечения. Предложенный В. Г. Шуховым геометрический способ определения усилий в арочных конструкциях, по мнению последующих исследователей выгодно отличается простотой и достаточной точностью и может применяться в практических расчетах и в настоящее время. Анализируя очертания верхнего пояса арочных ферм, В. Г. Шухов наряду с прямолинейными элементами рассматривал арки кругового и параболического очертания. Исходя из критерия получения минимальных напряжений в верхнем поясе арочной фермы или в конечном счете из минимальных абсолютных величин изгибающих моментов, были определены и рекомендованы оптимальные места прикрепления наклонных растянутых элементов к арке. При этом была показана эффективность установки наклонных тяг. Так, в случае параболической арки с тремя тягами, расположенными наивыгоднейшим образом, абсолютное значение изгибающего момента почти в три раза меньше, чем в арках, имеющих только одну горизонтальную затяжку. Предварительно аналитически было доказано, что места оптимального прикрепления наклонных тяг для арок с тремя затяжками расположены примерно в третях пролета арки.  [c.57]


В основу рассматриваемого метода положены уравнения движения жидкости в напряжениях (1.1) при условии пренебрежения касательными напряжениями. Эта же система уравнений может быть получена с помощью системы уравнений Навье также без касательных напряжений, но с добавлением локального ускорения в правую часть. Такое добавление приводит к учету влияния текучести, но не меняет допущений, относящихся к структуре геометрической области.  [c.44]

По аналогии со сказанным, и в методе напряжений в качестве основных разрешающих уравнений принимаются геометрические уравнения в форме уравнений Сен-Венана II — уравнений совместности деформаций. Шесть указанных уравнений надо выразить через  [c.45]

В заключение остановимся на определении перемещений ы, v в точках упругой полуплоскости от силы Р. При известных напряжениях Стг (4.105) и О0 = Тг0 =0 по закону Гука определяем деформации Ег, 80 и 7г0 и подставляем их в геометрические уравнения (4.82). В результате получим  [c.119]

Очевидно, чтобы получить решения (а), необходимо в физические уравнения (1.10.3) подставить геометрические соотношения (1.10.2), т. е. выразить напряжения через перемещения и затем полученные для них выражения подставить в три уравнения равновесия, в результате получим три уравнения  [c.29]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]


В теории пластичности сохраняют силу основные геометрические уравнения теории упругости. Деформированное состояние в точке напряженного тела характеризуется шестью составляющими деформации е , е , Уу , которые связаны  [c.261]

Расход топлива в топливных печах или мощность в электрических определяется на основе рассмотренного выше теплового баланса печи. Рекуператоры для подогрева воздуха рассчитывают, как теплообменные аппараты, по уравнениям теории теплообмена. Газовые горелки (форсунки) подбирают по производительности и давлению газа (мазута). Расчет нагревателей электропечей сопротивления проводят по заданной мощности печи, геометрическим размерам и напряжению питающей сети с учетом конечной температуры нагрева материала.  [c.177]

Для некоторых материалов распределение напряжений вблизи концов щели существенно связано с эффектами, описываемыми в рамках нелинейной теории упругости ). Используя уравнения геометрически и динамически нелинейной теории упругости, можно получить конечные значения напряжений вблизи конца щели. Даже в рамках линейной теории упругости с ис-  [c.513]

Таким образом, имеются две разрешающих функции — функция напряжений F я прогиб IV. Необходимо отметить, что равенства (23) позволяют удовлетворить первые два уравнения движения, записанные в упрощенной форме (22) , более общие первые уравнения (7) при этом не удовлетворяются. Одно из уравнений окончательной системы получается из второго уравнения (7) и связывает две неизвестные функции Р я IV. Второе уравнение, которое требуется для получения полной системы, является уравнением совместности деформаций и выводится из геометрических соотношений (21)  [c.224]

Эти соотношения можно назвать эффективными определяющими уравнениями слоистого композита, поскольку они определяют геометрические изменения, вызванные нагрузкой, приложенной к слоистому элементу, в отличие от общепринятого понятия определяющих уравнений теории упругости, связывающих напряжения и деформации в бесконечно малом материальном элементе. Располагая эффективными определяющими соотношениями, можно разработать теорию слоистого тела в целом, не прибегая к исследованию каждого слоя в отдельности методами теории упругости. Впрочем, решив конкретную краевую задачу, можно найти распределение напряжений по толщине слоистого тела во всех деталях.  [c.38]

Несмотря на то что любую поверхность можно описать уравнением вида (5), не всякую поверхность можно выбрать в качестве поверхности прочности более того, поверхность прочности не может быть мнимой и должна быть односвязной. Условия, которым должны удовлетворять коэффициенты f , Fij,. .. для того, чтобы выполнялись эти требования, изучаются в курсах геометрии. Геометрическая интерпретация полезна при установлении ограничений на Fi, Fij,. .. и при определении главных осей. При плоском напряженном состоянии поверхность прочности является трехмерной, так как определяется тремя компонентами напряжений о, ог и Ос,. Ради краткости изложения мы ограничимся — при рассмотрении геометрических интерпретаций и изучении корней уравнения (5) — лишь плоским напряженным состоянием и трехмерными поверхностями прочности. Метод определения характеристических направлений в и-мерном евклидовом пространстве позволяет распространить полученные ниже результаты на случай трехмерных напряженных состояний и шестимерные поверхности прочности. Развернув уравнение (56) для случая плоского напряженного состояния, т. е. для i,j = 1, 2, 6, получим уравнение поверхности прочности второго порядка  [c.451]

Если зависимости (7.1) в конкретной задаче нелинейны, ее называют физически нелинейной. Термин физическая нелинейность отражает то, что нелинейность заключена в физических уравнениях, дающих связь между напряжениями и деформациями. В отличие от этого, как уже было показано в главе VI ( 6.9), нелинейность может возникнуть и из уточненного рассмотрения геометрической стороны деформации тела. Такого рода нелинейность носит название геометрической нелинейности.  [c.495]


Решение. Легко убедиться, как и в предыдущем примере, в том, что прогиб конца консоли настолько велик, что пользоваться приближенным дифференциальным уравнением изогнутой оси не представляется возможным. С другой стороны, отношение Л//=1/100 настолько велико, что при достижении внешним моментом значения меньшего, чем максимальное, материал в наиболее напряженной области начинает работать в пластической стадии (см. 12.12, раздел 3). Учтем обе нелинейности (геометрическую и физическую). Первую — при помощи шаговой процедуры, вторую — путем введения понятия эквивалентного момента инерции в условиях использования шаговой процедуры.  [c.375]

Из уравнения (IV. 5) следует, что возникающие в результате биения дополнительные колебания системы не оказывают влияния на амплитуду переменных напряжений, которая определяется только статической нагрузкой и геометрическими размерами образца. Как показывает второе слагаемое ура внения (IV. 5), в результирующем напряжении появляется постоянная составляющая, вызывающая асимметрию цикла изменения максимальных напряжений. Величина среднего напряжения для системы с выбранными параметрами является линейной функцией начального биения s и не зависит от основной нагрузки. Подобная зависимость для системы нагружения машины МИП-8М представлена на рис. 56.  [c.89]

Изгиб и устойчивость пологих сферических оболочек, ползучесть материала которых описана нелинейными соотношениями, рассмотрен в работе [76]. Теории ползучести сформулированы с использованием законов течения и старения. Исследования проводятся на основе вариационных уравнений, учитывающих геометрическую нелинейность, в которых варьированию, кроме напряжений и перемещений (или их скоростей), подлежат также их интенсивности. Соотношения ползучести для оболочки упрощаются за счет осреднения интенсивностей деформаций и напряжений по толщине. При исследовании устойчивости применяется следующий подход. Полагается, что под действием внешнего давления в процессе ползучести оболочка изменят свою форму и вы-  [c.9]

Общая методика анализа формоизменяющих операций листовой штамповки разработана Е. А. Поповым [5] на основе анализа и обобщения работ советских и зарубежных ученых. В основе этой методики лежит использование единого уравнения равновесия, установленного для пространственного очага деформаций с учетом трения на контактной поверхности. Очаг деформаций рассматриваемой операции разбивается на отдельные зоны в соответствии с их геометрической формой, и напряжения определяются для каждой из них путем совместного решения уравнений равновесия и пластичности, а влияние напряжений в соседних зонах учитывается в граничных условиях при определении постоянных интегрирования. Единое уравнение равновесия для пространственного очага деформаций имеет вид  [c.205]

Деформированное состояние в точке напряженного тела характеризуется шестью составляющими деформации Ъх, у, z. Уху, Vyz. Vjj . Они связаны геометрическими соотношениями Коши (4.3) с составляющими перемещения u,v,ww должны удовлетворять шести уравнениям неразрывности деформаций (4.4). Основными, не связанными с системой координат характеристиками деформированного состояния в точке являются инварианты деформированного состояния (2.15) и инвариантные величины интенсивность деформаций сдвига (2.16) и интенсивность деформаций (2.17).  [c.219]

При выводе этих соотношений используются также уравнения равновесия (16.1), поэтому условия совместности в напряжениях так же, как и уравнения Ляме являются синтезом статической, геометрической и физической сторон задачи.  [c.340]

Известно, что при решении задачи в напряжениях, когда поперечное сечение тела является многосвязной областью, граничных условий оказывается недостаточно для определения произвольных постоянных. К ним необходимо добавить условия однозначности перемещений. Поперечное сечение замкнутой трубы является двухсвязной областью. Для составления условия однозначности перемещений подставим в формулы закона Гука для плоского напряженного состояния (18.5) геометрические соотношения (18.4). Тогда получим два уравнения  [c.392]

ИМЯ задач в геометрически нелинейной постановке суммирование напряжений выполняют с учетом поворо шв конечных элементов. Для уточнения решения в конце каждого шага нагружения координаты узлов сетки конечных элементов корректируют с учетом полученных приращений узловых перемещений, и расчет продолжают далее для нового положения конечных элементов. При этом необходимо следить за тем, чтобы полные напряжения удовлетворяли уравнениям равновесия в каждый момент нагружения во всех конечных элементах.  [c.102]

При преобразовании Фридрихса (12) дополнительные условия (геометрические уравнения) и условия стационарности (статические уравнения) функционала Лагранжа переходят соответственно в условия стационарности и дополнительные условия функционала Кастильяно. См. также 3.2г, в котором схема (12) дополнена обратным преобразованием Фридрихса, и 3.2в, где дана аналогичная схема для функционалов Лагранжа в деформациях и Кастильяно в функциях напряжений.  [c.59]

При наложении физических уравнений Эп2 переходит в функционал Эгс(и,е,а) для геометрических и статических уравнений (табл. 3.5). Исключив из него в соответствии с гл. 2, 2.2в деформации, получим полный функционал Рейсснера Э з(о, и), а исключив напряжения, получим другую разновидность функционала Рейсснера — Эр1 (и, е) (см. 3.1в).  [c.75]


В заключение рассмотрим с точки зрения статико-геометрической аналогии предельный случай, когда оболочка превращается в пластинку. Тогда в уравнениях теории оболочек надо положить Ri = R.j. = оо, и оболочки, как будет показано в 10.20, распадутся на две самостоятельные системы. Одна из них представляет собой уравнения изгиба пластинок, а другая — уравнения обобщенного плоского напряженного состояния, для которых роль функции Эри играет функция напряжений с. Статико-геометрическая аналогия в этом случае объясняет хорошо известный факт, что для функции Эри в плоской задаче и для нормального прогиба в теории изгиба пластинок получается одинаковое уравнение (бигармоническое).  [c.78]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]

Условие пластичности (15.1.4) может быть геометрически интерпретировано как уравнение поверхности в шестимерном или девятимерном пространстве, где координатами точек служат компоненты напряжений Оц. В первом случае учитывается симметрия тензора Оц и координат остается всего шесть, во втором случае равенства о,, = Оц не используются. Будем называть гиперповерхность, определяемую уравнением (15.1.4), поверхностью текучести. Для изотропного тела условия перехода в пластическое состояние должны определяться только главными напряжениями независимо от ориентации главных осей, поэтому условие пластичности можно записать в виде  [c.481]

Уравнение (16.9) в плоскости ,р определяет семейство кривых, соо ветствующих различным значениям А . Очевидно, что все кривые (16. симметричны относительно оси р. При А = 0, когда внешняя сила отс ствует, кривая (16.9) вырождается в точку 4 = 0, р = 1 и прямую - о абсцисс. Точке 4 = 0, р = 1 отвечают автоколебания лампового генерато в отсутствие периодического источника напряжения. При малых, отличнь от нуля значениях А кривые (16.9) состоят из двух отдельных кривых каждого значения А. Одна кривая близка к точке = 0, р = 1 (замкнут кривая типа эллипса, охватывающая эту точку), а вторая кривая распол гается вблизи оси абсцисс (рис. 16.1). При некотором значении А = А эллипсоидальная замкнутая кривая смыкается с нижней ветвью и образует единая петлеобразная кривая, изображенная на рис. 16.1 штрихом. Точ смыкания лежит на оси ординат и соответствует значению р = 1/3 кр тическое значение А равно 4/27. При значениях А >Л/П резонансн кривые имеют вид, представленный на рис. 16.2. При построении эт кривых было найдено геометрическое место вертикальных касательнь  [c.292]

В то же время учет геометрической нелинейности показывает, что максимальные нормальные напряжения, входящие в усталостное уравнение (2.111), имеют одно и то же для всех структурных элементов ограничение сверху. Такой вывод следует из полученного в разделе 4.2.2 решения упругопластической задачи при статическом нагружении тела с трещ иной (к сожалению, при циклическом решении идентичного решения тюлучить не удалось). Выходом из создавшейся ситуации может служить ограничение максимальных нормальных напряжений, полученных в результате решения циклической задачи, величиной, соответствующей наибольшим напряжениям, которые получены при решении статической задачи в геометрически нелинейной постановке.  [c.216]

Строгая математическая модель деформаций дЛя всей конструкции ЭМУ, состоящей из п тел, в соответствии с теорией упругости представляет совокупность п систем известных уравнений физических (закон Гука) для составляющих напряжений в точке, геометрических (условия совместности) для деформаций в точке от перемещений и статических (уравнения равновесия) для связи напряжений с проекциями объемных сил совместно со взаимосвязанными геометрическими и граничными условиями [3]. При этом предполагается, что нагрузки на элементы конструкции заданы. Это существенно, например, при рассмотрении температурных полей и деформаций и их взаимовлияршя.  [c.120]

В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]

Уравнения (2.1) и (2.2) вместе с соотношениями (2.9), (2.10) определяют решение задачи теории ползучести для непрерывно-нара-щиваемого призматического тела, подверженного старению. На рис. 2.2.2, 2.2.3 изображены зависимости напряжения от времени в различных точках наращиваемого тела при постоянной во времени силе Рд- Площадь <5 t) равномерно возрастает на интервале 1 + Т до величины 4 0 и далее остается постоянной. Геометрическое положение точки наращиваемого тела, родившейся в момент времени характеризуется величиной соответствующей площади б (I), равной ДЛЯ точек рис. 2.2,2, 2.2.3 соответственно 5о 1,315д 1,6<5о 2,51 о 45ц.  [c.86]

Анализируя различные подходы к решению геометрически и физически нелинейных задач теории оболочек, выбираем вариационный подход. При построении вариационного уравнения термоползучести используем допущения технической теории гибких оболочек, успещ-но применяемой в расчетах упругих пологих оболочек, и физические соотношения в форме связи тензоров скоростей изменения деформаций и напряжений с учетом ползучести материала. Вариационное уравнение смешанного типа, в котором независимому варьированию подвергаются скорости изменения прогиба и функции усилий в срединной поверхности, позволяет использовать для описания реологических свойств материала хорошо обоснованные теории ползучести типа течения и упрочнения. Задачи мгновенного деформирования решаем методом последовательных нагружений, а задачи ползучести — методом шагов по времени.  [c.13]

Предложенный в 3.1 метод нелинейного статического расчета прост в реализации и может использоваться на практике при исследовании напряженно-деформированного состояния пространственных тонкостенных конструкций со слабо выраженной геометрической нелинейностью. В этом случае ошибки, обусловленные использованием линеаризованных уравнений равновесия, сравнительно малы и не оказывают существенного влияния на результаты расчета. Для существенно геометрически нелинейных конструкций применение линеаризованных уравнений становится неоправданным ни с точки зрения точности результатов, так как возникающая вследствие линеаризации невязка не поддается контролю, ни с точки зрения вычислительной эффективности, так как для достижения заданной точности может потребоваться очень большое количество шагов. Ниже описывается шагово-интерационный метод расчета, основанный на использовании нелинейных уравнений (1.71).  [c.95]


Геометрическая интерпретация. В пространстве главных нормальных напряжений уравнения (IX.2) определяют правильную шестигранную призму, осью которой является гидростатическая ось 01 = 02 = 03, а каждая грань параллельна одной из координатных осей и равнонаклонена к двум другим (рис. 82). Поскольку возникновение пластических деформаций определяется не величиной главных нормальных напряжений, а их разностью, длина призмы не ограничена. В соответствии с условием текучести при линейном напряженном состоянии = о, призма отсекает на осях координат отрезки, равные Кривая текучести на девиаторной плоскости — правильный шестиугольник со стороной, равной 01 sin ar os sin 54° 44 = о,,  [c.194]

При использовании статико-геометрической аналогии в вариационной форме проявляется преимущество вариационных формулировок, охватывающих все стороны задачи и согласующих дифференциальные уравнения и граничные условия. В частности, эта форма содержит в себе аналогию между статическими и геометрическими граничными величинами, между геометрическими граничными условиями в перемещениях или деформациях и статическими — в функциях напряжений или усилиях, а также между сложными граничными условиями для односвязных и многосвяз-пых областей.  [c.136]

Для построения расчетных схем, основанных на МКЭ, могут быть пспользованы различные функционалы для разрывных полей перемещений, напряжений и т. д. (см. гл. 3 б и гл. 4 6), а в более сложных случаях — комплекс полных и частных функционалов для многоконтактных задач [4.1]. Особый интерес представляют функционалы граничных условий, которые могут быть использованы как в варианте МКЭ, основанном на методе Ритца, так и в варианте, основанном на аппроксимации функционала. Первый представляет интерес для энергетических оценок погрешности он может быть реализован при достаточно простых законах распределения упругих констант и нагрузок в области, таких, что все уравнения (геометрические, физические, статические) внутри конечного элемента могут быть выполнены за счет выбора аппроксимирующих функций это возможно, например, для однородного анизотропного тела при отсутствии объемных сил. Задача о стационарном значении функционала граничных условий служит для приближенного выполнения граничных условий и условий контакта между элементами.  [c.172]

При бесконечно малой деформации материальной частицы все тензоры деформаций превращаются в тензор деформаций Коши е, который связан линейными соотношениями (1.56) с тензором градиента перемещений Н, а все тензоры напряжений превращаются в тензор напряжений Коши сг. Предположим, что условие бесконечно малой деформации выполнено для всех материальных частиц тела В. Деформацию тела при выполнении этого условия назовем геометрически линейной или бесконечно малой . Подход к формулировке уравнений с использованием тензоров деформаций е и напряжений сг назовем геометрически линейным или MNO (material nonlinear only) подходом. При этом наряду с геометрически линейным деформированием тела допускается физическая нелинейность деформирования, которая может присутствовать в определяющих соотношениях, связывающих тензоры напряжений и деформаций и/или их скорости.  [c.65]

Значительный вклад в теорию оболочек внес А. Л. Гольденвейзер. Им были введены уравнения неразрывности деформаций [34], которые являются аналогом известных уравнений Сен-Венана в общей теории упругости. Тем самым открылась возможность решения задач теории оболочек непосредственно в усилиях и моментах, не прибегая к предварительному определению смещений. При этом обнаружилось примечательное подобие вновь выведенных уравнений неразрывности и более полувека используемых уравнений равновесия оболочки, получившее название статико-геометрической аналогии. Указанная аналогия позволяет тождественно удовлетворить уравнениям равновесия путем введения четырех функций напряжения (что было подмечено почти одновременно А. Л. Гольденвейзером [35] и А. И. Лурье [78]).  [c.8]


Смотреть страницы где упоминается термин Уравнения геометрические в в напряжениях : [c.68]    [c.35]    [c.106]    [c.75]    [c.288]    [c.228]    [c.418]    [c.127]    [c.18]    [c.369]    [c.415]    [c.185]   
Основы теории упругости и пластичности (1990) -- [ c.45 ]



ПОИСК



Напряжения Уравнения

Уравнения геометрические



© 2025 Mash-xxl.info Реклама на сайте