Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гиперболическая система дифференциальных уравнений

В простейшем и наиболее важном для приложения случае линейной теории однородных изотропных упругих тел задача сводится к разысканию интегралов вырожденной гиперболической системы дифференциальных уравнений теории упругости или системы уравнений термоупругости, которая не относится к классическим каноническим типам, удовлетворяющих в некоторой области D X [О, оо) заданным начальным и граничным условиям (I, 14 и 15).  [c.312]

Линеаризация гиперболической системы дифференциальных уравнений. Граничные условия  [c.158]


Чтобы зафиксировать обозначения, напомню известные определения световой гиперповерхности и гиперболической системы дифференциальных уравнений с частными производными.  [c.275]

Методы построения и свойства решения полученной системы дифференциальных уравнений прежде всего определяются ее типом (см. добавление). Покажем, что эта система гиперболического типа.  [c.137]

По-видимому, эту систему надо отнести к новым системам дифференциальных уравнений смешанно-составного типа. Так, в локальной системе координат, связанной с главными напряжениями, изменение перемещений (скоростей перемещений) определяется дифференциальным оператором эллиптического типа вдоль второго главного направления, содержащим вторые частные производные от перемещений по координатам. А в поверхностях, ортогональных второму главному направлению, происходит привычное для плоской деформации описание перемещений (скоростей перемещений) с помощью дифференциальных операторов гиперболического типа две поверхности разрыва — линии скольжения (вещественные характеристики). По-видимому, эти особенности отражают физическую гипотезу Т. Кармана о сохранении упругой (квазиупругой) связи по второму главному направлению.  [c.43]

Система дифференциальных уравнений термоупругости (1.1) состоит из уравнения движения упругой среды, принадлежащего гиперболическому (вырожденному) типу и из уравнения теплопроводности, относящегося к параболическому типу. Эта система, как уже отмечалось (см. I, 15, п. 1), не входит в известные канонические классы уравнений математической физики.  [c.418]

Поскольку оба корня характеристического уравнения (6.14) действительные и различные, система дифференциальных уравнений (6.12) является гиперболической. Если оба корня (6.14) одинаковы,  [c.157]

Нелинейная система дифференциальных уравнений (6.12) в частных производных гиперболического типа, как отмечалось в работах М. Леви [87], может быть линеаризована. Действительно, если принять за неизвестные функции параметры т] и в уравнения <6.12) подставить значения Оо и ф из (6.18), то после небольших преобразований [102] дифференциальные уравнения гиперболиче-  [c.158]

Поэтому данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных уравнений тепломассопереноса (разд. 6), подробно рассмотрены гиперболические уравнения диффузии тепла и массы с учетом конечной скорости распространения. Установлена связь этого нового направления в описании явлений тепломассопереноса с работами американской школы по диффузии массы в пористых средах.  [c.4]


Применение метода конечных элементов к задачам в частных производных параболического или гиперболического типа приводит к решению системы дифференциальных уравнений первого порядка вида  [c.87]

Если на границе тела заданы напряжения, то определение напряжений во всех точках тела связано с интегрированием гиперболической системы двух нелинейных дифференциальных уравнений в частных производных (IX.11) при известных граничных условиях. Обычно эти уравнения решаются приближенными методами построения полей линий скольжения. Иногда удается построить решение краевой задачи, основываясь только на свойствах линий скольжения.  [c.116]

Пусть система (7.13) гиперболического типа, тогда уравнение Д = О имеет два вещественных решения X,i (х, у), ( , у). Это дает два дифференциальных уравнения  [c.234]

Корни этого уравнения k и (причем ki < /%з) определяют частоты свободных колебаний ki и 3. Оба эти корня должны быть положительными, так как в противном случае ki и будут мнимыми или комплексными и принятые частные решения дифференциальных уравнений (19.1), выраженные через тригонометрические функции мнимого или комплексного аргумента, т. е. содержащее гиперболические функции времени t, покажут неограниченное возрастание обобщенных координат, что не может быть при малых колебаниях системы около устойчивого положения равновесия.  [c.83]

Система уравнений (I) и (II) является системой нелинейных дифференциальных уравнений с частными производными гиперболического типа. Решение этой системы уравнений представляет значительные математические трудности.  [c.372]

В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка  [c.12]

Как известно, дифференциальные уравнения, описывающие газодинамический процесс в трубопроводе, могут быть сведены к системе квазилинейных дифференциальных уравнений гиперболического типа [6]  [c.96]

Данная система является системой гиперболических дифференциальных уравнений. Они имеют общее решение вида  [c.299]

В областях — oo< x<+ сои 1<у<+оо справедлива система гиперболических дифференциальных уравнений (7)  [c.300]

Характеристики дифференциальных уравнений (7.5.1) можно найти так же, как это делалось для уравнений (7.4.2). В результате вместо (7.4.3) получим равенство, в левой части которого стоит транспонированный определитель. Это значит, что характеристики геометрических безмоментных уравнений также совпадают с асимптотическими линиями срединной поверхности, а следовательно, эта система будет эллиптической Для оболочек положительной кривизны, гиперболической для оболочек отрицательной кривизны и параболической для оболочек нулевой кривизны.  [c.108]

Решение системы уравнений гиперболического типа тесно связано с характеристическими линиями, определяемыми дифференциальными уравнениями (4) и покрывающими плоскость х, у криволинейной сеткой.  [c.313]

Объединив это уравнение с соотношениями (7), (8), получим квазилинейную систему дифференциальных уравнений в частных производных первого порядка с независимыми переменными t, X. Нетрудно показать, что при выполнении определенных ограничений, наложенных на полиномиальные разложения в (7) и (8), эта система уравнений есть система гиперболического типа.  [c.154]

Известно 1—4], что определяющие уравнения для напряжений и скоростей теории плоского пластического течения жесткопластического тела приводятся к системе четырех квазилинейных дифференциальных уравнений первого порядка, которые относятся к гиперболическому типу. Их характеристики в физической плоскости совпадают с линиями скольжения и траекториями максимальных касательных напряжений. Построение полей напряжений и скоростей сводится к решению последовательности краевых задач с граничными условиями для напряжений и скоростей. Обычно вначале решаются краевые задачи для напряжений, связанных с уравнениями характеристик, и строится поле характеристик. Затем строится поле скоростей в пластической области при совпадении жесткопластических границ с характеристиками. После этого проверяется условие неотрицательности диссипативной функции и несущая способность принятых жестких областей 2, 3]. Для некоторых типов задач плоского пластического течения со смешанными граничными условиями разработаны методы построения полных решений, в которых вначале строится поле скоростей в плоскости характеристик или в плоскости годографа с использованием кинематических граничных условий на контуре инструмента, а затем строится поле напряжений и вычисляются характеристики в физической плоскости [5—7]. В этих решениях жесткопластические границы также совпадают с характеристиками. В [8, 9] разработан метод решения задач плоского пластического течения с использованием криволинейных координат, совпадающих с линиями тока и ортогональными к ним направлениями, и рассмотрены случаи пластического течения, в которых линии тока являются логарифмическими спиралями.  [c.54]


Если дискриминант уравнения (37.68е) равен нулю, то две системы характеристик сливаются в одно семейство кривых, когда же он отрицателен, то действительных характеристик не существует вовсе. Три соответствующих типа дифференциальных уравнений в частных производных, как известно, называются гиперболическим, параболическим и эллиптическим 2). Само собой разумеется, что характер дифференциального уравнения в частных производных общего вида (37.68) в различных областях поля координат может изменяться, а уравнение может быть гиперболическим в одной области и параболическим или эллиптическим в примыкающих областях и т. д.  [c.624]

Основным объектом математического исследования в теории пластичности являются нелинейные гиперболические системы дифференциальных уравнений в частных производных и краевые задачи для них, сформулированные для областей с неизвестными границами. Для нонимания содержания от читателя требуется достаточно свободное владение основами современной механики снлогпных сред, включая понимание тензорного формализма, а также — дифференциальной геометрии и теории уравнений с частными производными.  [c.7]

Решение системы уравнений движения, удовлетворяющее граничным условиям (2,14)-(2,16), выпо.таено численным методом интегральных соотношений [90] в его гиперболическом варианте [91], Применялась дивергентная форма записи в переменных z,l,z = /w l), где г = 0 образ сильного разрыва, = w l) непротекаемая стенка. Аппроксимирующая система дифференциальных уравнений получена разбиением интервала ге[0,1] на пять полос и при.менением интерполяционных квадратур типа Ньютона-Котеса, Итоговая система обыкновенных дифференциальных урав-  [c.47]

Методы получения решений, удовлетворяющих граничным условиям, требуемым в практических приложениях, основаны на принципе Римана, согласно которому для класса уравнений в частных производных гиперболического типа интегралы, имеющие различную аналитическую форму, могут гладко сопрягаться вдоль определенных линий скольжения, т. е. вдоль той или иной из характеристических кривых данной системы дифференциальных уравнений (см. т. 1, стр. 625). Раньше внимание концентрировалось на вопросе о том, какую форму следует припи-  [c.556]

Еще раз подчеркнем, что, в отличие от одномерных неустано-вившихся движений газа, система дифференциальных уравнений, описывающая плоские или осесимметричные установившиеся движения, не является гиперболической для всех возможных движений. Эта система гиперболическая в области, где скорость газа сверхзвуковая, и эллиптическая—там, где газ движется с дозвуковой скоростью. Если при движении газа возникают дозвуковые и сверхзвуковые скорости (такие движения называются смешанными или трансзвуко-выми), то система уравнений приобретает смешанный тип эллиптический в одной части области движения и гиперболический — в другой.  [c.249]

С другой стороны, в общем случае в гиперболической области соотношение шагов в разностной схеме должно быть таково, чтобы область влияния аппроксимирующей системы не выходила за область влияния исходной системы дифференциальных уравнений, т. е. другими словами должно быть выполнено условие Куранта — Фридрикса — Леви. Однако в классе аналитических функций соотношение шагов в разностной схеме может быть произвольным, так как в силу аналитичности начальных данных нельзя изменить их на каком-либо участке, не изменив их во всей области аналитичности.  [c.99]

Определение 5. Система дифференциальных уравнений с частными производными называется гиперболической (по отношению к временноподобному направлению), если её гиперповерхность Френеля гиперболична (по.отношению к соответствующей временноподобной точке).  [c.277]

Симплектическая структура 6 Симплектическая триада 234 Симплектическая форма 6 Симплектоморфизм 8 Система дифференциальных уравнений с частными производными, гиперболическая в точке 278 Складка, особенность 28 След многочлена 11 Сложенный зонтик 154 Спектр особенности 33 Список лагранжевых особенностей 27 Стгъбильная Л" -зквивалентность 29 Стабильная эквивалентность проектирований 169  [c.333]

Из формулы (15.8.7) следует, что при т 1<1 существует два семейства характеристик, соответствуюпщх знакам плюс и минус в формуле (15.8.7). В этом случае система (15.8.4) называется гиперболической. Если т 1>1, то формула (15.8.7) определяет мнимые направления, и система (15.8.4) называется эллиптической. Метод характеристик, т. е. отыскание соотношений вдоль характеристик из условия Z)p, i = О, для эллиптической системы не приводит к цели. Наконец, промежуточный случай, когда т = 1 и оба семейства характеристик сливаются, соответствует параболической системе исходных дифференциальных уравнений, В зависимости от вида условия пластичности в теории пластичности встречаются все три случая при этом гиперболическая задача оказывается наиболее простой, для нее. разработаны эффективные методы решения. Дальнейшее изложение будет ограничено почти исключительно случаем гиперболичности уравнений пластичности.  [c.502]

Уравнения (3.72), (3.76) и (3.84) образуют систему гиперболических дифференциальных уравнений в частных производных первого порядка с двумя независимыми переменными, которыми являются осевая координата х и время Решение этой системы находится путем интегрирования. Функцию можно проинтегрировать на некотором интервале, если она непрерывна на этом интервале. Метод характеристик позволяет проинтегрировать известные непрерывные функции, вид которых типичен для рассматриваемой системы уравнений. Поэтому метод характеристик представляет собой, по существу, строгую математическую процедуру замены квазилинейных неоднородных уравнений в частных производных системой общих дифференциальных уравнений, обычно называемых совместными уравнениями, которые справедливы и интегрируемы на поверхностях, называемых характеристиками или характеристическими поверхностями. Мы дали в какой-то степени упрощенное описание этой процедуры более строгое математическое описание можно найти в классической монографии Куранта и Фридрихса [50] или в содержательной работе Цукроу и Хофмана [41].  [c.340]


В дальнейшем (обзор работ дан в [14]) этот метод был обобщен для некоторых систем базисных функций Sk, в частности при Sk (f) = для случая квазилинейных гиперболических систем уравнений, и хорошо зарекомендовал себя при решении ря да сложных пространственных задач газовой динамики. Оказалось, что коэффициенты go gi определяются геометрией поверхности (7) (в том числе и для многомерного слу чая), коэффициент д2 — из нелинейного уравнения первого порядка, а последующие коэффициенты — из линейных дифференциальных уравнений. Применение специаль ных независимых переменных позволило для большой серии пространственных задач газовой динамики проинтегрировать в квадратурах системы уравнений для gk и полу чить их явные представления. Решение конкретных задач показало быструю сходимость зядов (6) и возможность их применения для описания зон течения газа с большими гра диентами газодинамических величин, в частности, в зонах сильных волн разрежения, расчет которых с высокой точностью обычными численными методами весьма труден.  [c.20]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

Заключительные замечания. Теоремы существования и единственности решения поставленной задачи представляют собой обобщение соответствующих теорем теории оптимального управления системами, описываемыми дифференциальными уравнениями в частных производных гиперболического типа [15]. Теорема существования будет локальной, поскольку в общем случае минимизируемые функционалы являются многоэкстремальными. Более того, для существования решения требуется свойство полной непрерывности отображения X —> К Х), которое в общем случае можно только постулировать. Проблема доказательства полной непрерывности для рассматриваемых здесь нелинейных прямых краевых задач, описываемых вариационными или квазивариационными неравенствами, по-видимому, пока не решена.  [c.483]

Согласно Р. Мпзесу ), составляющие перемещений для плоской пластической деформацпи при неоднородном напряженном состоянии можно определить прп помощи функции тока ф (подобно тому, как это было показано в случае однородного напряженного состояния для составляющих и , Му в прямоугольной системе координат). Функция тока должна удовлетворять дифференциальному уравнению в частных производных гиперболического типа  [c.625]

Другой подход к решению вариационных задач газовой динамики был предложен Т. К Сиразетдиновым. Этот подход дает возможность решать задачи при произвольных ограничениях, накладываемых на на поверхность обтекаемого тела, и состоит в том, что дифференциальные уравнения в частных производных, описывающих течение, используются в качестве связей между функциями в области влияния. При составлении функционала Лагранжа для задачи на безусловный экстремум эти. уравнения учитываются при помощи переменных множителей Лагранжа. Необходимые условия экстремума для такой задачи в общем случае представляют собой краевую задачу для системы нелинейных дифференциальных уравнений в частных производных с условиями на замкнутой поверхности, ограничивающей область влияния. При сверхзвуковых скоростях эта система, включающая уравнения для множителей Лагранжа, имеет гиперболический тип.  [c.243]

Другой подход к решению смешанной задачи сверхзвукового обтекания тел дан С. К. Годуновым, А. В. Забродиным и Г. П. Прокоповым (1961). В этом методе установления решение смешанной задачи о стационарном обтекании тела находится как предел гиперболической задачи неустановившегося обтекания этого тела. На двумерные плоские и осесимметричные течения обобш ается метод решения задач о нестационарных одномерных движениях газа с разрывами, предложенный ранее С. К. Годуновым (1959). В методе установления уравнения плоского или осесимметричного неустановившегося движения в дивергентной форме записываются в виде интегралов по поверхности в трехмерном пространстве координат и времени. Такая форма записи в виде законов сохранения обеспечивает возможность рассмотрения течений со скачками уплотнения и другими разрывами. Далее в этом пространстве с учетом формы обтекаемого тела выбирается сетка и интегралы записываются в виде соответствующих сумм подынтегральных выражений в узлах этой сетки. Система координат не предполагается фиксированной. Интегралы, записанные для отдельной ячейки сетки, используются затем для получения разностных уравнений в подвижной координатной системе, причем в течение каждого шага по времени значения газодинамических величин на каждой границе ячейки считаются неизменными. Эта система конечноразностных уравнений, полученная из интегральных законов сохранения, служит аппроксимирующей системой для точных дифференциальных уравнений.  [c.178]

Нестационарые задачи были подробно изучены в случаях изотермического течения- В большинстве работ по дозвуковому движению газа в газопроводах при малых числах Маха конвективным инерционным членом в динамическом уравнении пренебрегают. Однако и в этом приближении нелинейная система основных дифференциальных уравнений одномерного движения оказывается гиперболической- По-вйдимому, И. А. Чарным (1951, 1961) впервые было предложено для дальнейшего упрош ения задачи при рассмотрении медленно изменяющ,ихся во времени движений газа отбрасывать также и локальный инерционный член динамического уравнения. В этом приближении задача становится параболической, хотя, вообще говоря, сохраняет нелинейный характер, И для того, и для другого приближений Чарным были предложены различные способы. линеаризации уравнений (в некоторых случаях задача сводится к уравнению теплопроводности). Им же были даны решения некоторых типичных задач в линейной постановке )  [c.735]


Анализ течения, отвечающего напряжениям на грани призмы, проведенный А. Д. Коксом, Дж. Исоном и Г, Дж. Гопкинсом (1961 г.), X. Лип-пманом (1962 г.) и другими авторами, показал, что оно является кинематически определимым. На грани, по ассоциированному закону течения, скорость главной деформации в направлении среднего главного напряжения равна нулю это условие доставляет дополнительное уравнение для скоростей. В результате для нахождения составляющих скорости у,, Vz и угла г ), определяющего главное направление, имеем систему трех дифференциальных уравнений. Эта система гиперболического типа характеристики ее ортогональны и в диаметральном сечении г, z совпадают с траекториями главных напряжений.  [c.109]


Смотреть страницы где упоминается термин Гиперболическая система дифференциальных уравнений : [c.101]    [c.297]    [c.44]    [c.92]    [c.147]    [c.26]    [c.57]    [c.202]    [c.246]   
Особенности каустик и волновых фронтов (1996) -- [ c.0 ]



ПОИСК



Гиперболическая система

Гиперболическая система уравнени

Гиперболические уравнении

Граничные задачи для квазилинейных гиперболических систем двух дифференциальных уравнений первого порядка с двумя независимыми переменными

Дифференциальные системы

Линеаризация гиперболической системы дифференциальных уравнений. Граничные условия

Система дифференциальных уравнений

Система дифференциальных уравнений гиперболическая в точке



© 2025 Mash-xxl.info Реклама на сайте