Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип вариационный для упругих тел

Принцип вариационный для упругих тел в равновесии 391  [c.565]

Для изучения роста трещин в средах такой реологии воспользуемся, например, интегральным вариационным принципом для упругого тела (4.10).  [c.300]

Вариационное уравнение для упругого тела при динамических нагрузках можно получить из вариационного принципа Лагранжа (1.29), добавив к массовым силам силы инерции  [c.120]


Таким образом, для упругих тел, нагруженных силами, имеющими потенциал, начало возможных перемещений превращается в вариационный принцип — начало стационарности полной энергии (который ранее был сформулирован при рассмотрении деформации в декартовых координатах).  [c.178]

Воспользуемся для примера вариационным принципом Лагранжа, который заключается в том, что вариация работы внутренних и внешних сил на возможных перемещениях, согласующихся с геометрическими граничными условиями, равна нулю. При этом предполагается, что во всех точках тела не возникает разгрузка (другими словами, рассматривается вариационный принцип Лагранжа для нелинейно-упругого тела). Вариация работы внутренних сил 6J7 определяется выражением  [c.306]

В результате для вязкоупругого тела можно сформулировать вариационный принцип, являющийся обобщением вариационного принципа Кастильяно, рассмотренного в гл. 3 применительно к упругим телам.  [c.357]

Из вариационного принципа (4.7) следует, что для рассматриваемой задачи о растяжении плоскости с трещиной энергия, выделяемая упругим телом при продвижении трещины па равна  [c.256]

Обычно задачу о магистральных трещинах, развивающихся, в твердых телах, решают для прямолинейных трещин в предположении, что линия распространения трещины задана. Можно отказаться от этого ограничения, если рассматривать последовательность решений задачи теории упругости для одинаковых тел, каждое из которых содержит некоторый разрез (трещину), произвольной конфигурации. Эта последовательность составляет класс допустимых функций, из которых частное решение, отвечающее равновесию тела с трещиной, выбирается с помощью излагаемого здесь вариационного принципа.  [c.31]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]


В данной книге представлены результаты систематического исследования вариационных принципов статической теории упругости и оболочек с позиций стационарности и экстремальности функционалов. Благодаря общему подходу выявлены некоторые новые, не менее интересные, но еще не исследованные вариационные формулировки для анизотропного неоднородного тела и анизотропной неоднородной оболочки.  [c.7]

Построена и изучена с точки зрения стационарности и экстремальности система полных и частных функционалов в случае разрывных полей перемещений, деформаций, напряжений и функций напряжений некоторые вариационные принципы для таких полей впервые рассматривались В. Прагером [0.12]. Аналогичные вопросы рассмотрены и в теории оболочек. Необходимость рассматривать разрывные поля в качестве возможных состояний упругого тела возникает иногда при численном решении задач, в частности при использовании метода конечных элементов.  [c.10]

В-третьих, иногда вариационные принципы приводят к формулам для верхней и нижней оценки точного решения задачи. В гл. 6 с помощью одновременного применения двух вариационных принципов будут получены формулы для верхней и нижней оценок крутильной жесткости стержня. Другим примером служит формула для верхней границы наименьшей частоты колебаний упругого тела, полученная из принципа стационарности потенциальной энергии.  [c.20]

В гл. 1 и 2 книги мы будем рассматривать теорию упругости при малых перемещениях (геометрически линейную теорию упругости) и выведем принцип виртуальной работы и связанные с ним вариационные принципы для задачи о статическом равновесии упругого тела, находящегося под действием массовых (объемных) сил, при заданных граничных условиях [1,2 ]. Для описания трехмерного пространства, в котором рассматривается тело, применяются ортогональные декартовы координаты (х, у, z). В геометрически линейной теории упругости компоненты перемещений и, V, W в точке тела считаются столь малыми, что уравнения задачи выполняются в линейном приближении. Запишем эти линеаризованные уравнения  [c.23]

Для линейно-упругого тела, материал которого при деформировании подчиняется закону Гука (1.11), деформации е определяются через напряжения е = С- о, где — матрица коэффициентов податливости. Тогда вариационная формулировка принципа возможных изменений напряженного состояния, соответствующая (1.65), принимает вид  [c.19]

Формулировка вариационного принципа стационарности действия для нелинейно упругого тела в переменных Эйлера и вывод уравнения баланса импульса из него на основе канонического определения тензора напряжений Коши приводятся в [11, с. 190-195].  [c.679]

Во многих случаях для определения тепловых напряжений эффективно применение вариационных методов. Рассмотрим в связи с этим вариационные принципы термоупругости [83], соответствующие вариационным принципам изотермической теории упругости, предполагая, что тело находится под действием поверхностных f и объемных сил при температурном поле Т — То-  [c.45]

Малые вариации напряженного состояния в упругом теле, рассматриваемые во втором вариационном принципе для работы, подчиняются условию 1, но их распределение молсет отклоняться от истинного в упругом теле в том отношении, что соответствующие им деформации, вообще говоря, не будут удовлетворять либо условию 2, либо условию 3 в зависимости от того, каким способом производится варьирование.  [c.144]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]


Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

Предложенный вариационный принцип позволяет развить различные приближенные методы интегрирования систем дифференциальных уравнений, описывающих термоупругие процессы в твердых телах, в частности взаимосвязанные и с учетом конечности скорости распространения тепла. Исходя из того, что принуждение для действительного движения минимально, можно определить, например, конкурентную способность различных способов приведения трехмерных связанных задач термоупругости к двумерным задачам теории пластин и оболочек, различных моделей реальных нагретых упругих тел.  [c.136]

Если отыскание точного решения задач о равновесии упругого тела встречает затруднения (а с такими случаями часто приходится встречаться на практике), можно для определения приближенных решений использовать вариационные методы, подробно изложенные в книге Л. С. Лейбензона [17] и в [18]. Основой этих методов являются принцип возможных перемещений и принцип наименьшей работы.  [c.74]

Так как большинство приближенных методов решения различных задач теории упругости, пластичности и ползучести основывается на классическом вариационном принципе, согласно которому действительная форма равновесия тела отличается от всех возможных форм тем, что для нее полная энергия системы  [c.58]

Без преувеличения можно сказать, что книга Ю, Н. Работнова к настоящему времени является лучшей среди подобных ей книг как у нас в стране, так и за рубежом. Впервые с единых позиций в ней дается изложение основ всех главных разделов механики деформируемого твердого тела. Книгу отличает компактность изложения, достигаемая за счет широкого применения таких эффективных методов исследования, как вариационные принципы, тензорные исчисления, теория функций комплексного переменного, интегральные преобразования и т. д. Этому также способствует и оригинальная трактовка теории напряжений. Естественно, что, представляя проблему во всем ее многообразии (стержни, пластинки, оболочки, пространственные тела, упругость, пластичность, ползучесть, наследственность, устойчивость, колебания, распространение волн, длительная прочность, разрушение), автор сконцентрировал внимание на принципиальных вопросах. Тем не менее книга снабжена достаточно большим количеством примеров расчета, для того чтобы читатель мог составить представление о практических возможностях теории.  [c.9]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

ОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УПРУГОСТИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ, ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА  [c.41]

Ниже мы рассмотрим вариационную постановку задачи о динамическом росте трещины в линейно-упругих, а также нелинейных (упругих или неупругих) телах. Вначале исследуем динамику развития трещины в линейно-упругом материале. Рассмотрим два момента времени t и + в соответствии с которыми переменные, описывающие поля, обозначаются индексами 1 и 2. Пусть в момент времени ti объем тела будет l/ , внешняя граница тела с заданными нагрузками Т будет 5<л, поверхность трещины равна 5 . Предположим, что между моментами ti и ta площадь трещины изменяется на AS = S 2 — 5 . Для простоты считаем, что поверхность трещины свободна от приложенных нагрузок. Более общий случай, учитывающий объемные силы и нагрузку, приложенную к поверхности трещины, рассмотрен в [9, 10]. Принцип виртуальной работы, определяющий движение твердого тела между моментами ti и г г, когда происходит рост трещины, определяется следующим образом 19,10  [c.274]


Основываясь на аналогии между уравнениями для упругого тела в состоянии равновесия и для вязкой ньютоновской жидкости в установившемся стоксовом течении, Хилл и Пауэр [16] вывели два экстремальных принципа. Стьюарт [28] обсудил эти взаимно дополняющие вариационные принципы и применил их к проблеме ламинарного течения в однородных каналах. Эти теоремы ограничивают диссипацию энергии в данной краевой задаче с обеих сторон, т. е. в интервале между верхним и нижним пределами, соответствующими произвольному выбору допустимых функций. Одна такая функция, которая доставляет верхний предел, определяется по теореме Гельмгольца. Для нижнего предела напряжения должны быть такими, как если бы они были результатом действия на тело конечной силы, или пары сил, или обоих факторов вместе. Многочисленные применения приведены в работе [16], включая случай поступательного движения сферы в неограниченной среде, где для иллюстрации показано, что справедливы неравенства  [c.113]

Путем наложения некоторых связей в уравнениях обобщенного вариационного принципа можно получить сформулированные относительно скоростей уравнения вариационного принципа Хилла для упругих и упругопластических тел при произвольной величине деформаций [47, 73, 78, 79, 81]. Рассмотрим уравнения (3.6). Предположим, что варьируемые поля скоростей перемещений й принимают заданные значения на границе qSu, т.е. выполнены кинематические граничные условия в (3.6). В этом случае исчезает последний член в правой части (3.8). Далее предполагаем, что материальная производная тензора градиента деформации не является произвольной варьируемой величиной, а выражается через материальную производную тензора градиента перемещения с помощью четвертого равенства (3.6). Тогда исчезает второй член в правой части (3.8). Предположим также, что материальная производная первого тензора напряжений Пиола — Кирхгофа не является независимой варьируемой величиной, а выражается через материальную производную тензора градиента деформации с помощью последней формулы (3.6), т.е. определяющие соотношения предполагаются заданными. В этом случае вариационное уравнение (3.7) преобразуется в следующее  [c.117]

Обобщение вариационного принципа Хилла (для упругих и упругопластических тел) на уравнения, описывающие деформирование тел из термоупругопластических материалов с учетом деформаций ползучести, проведено в [117]. Для этого потенциальные функции оЕ, qW, tE, iW, tH, используемые при формулировке определяющих соотношений упругих и упругопластических материалов (разделы 2.1, 2.2), надо заменить соответствующими потенциальными функциями, применяемыми при построении определяющих соотношений термоупругопластических материалов с учетом деформаций ползучести (раздел 2.3).  [c.120]

Можно построить математическое представление упругого поля с помощью так называемого обратного описания деформации тела, развитого в работах Маженна (G. А. Маи-gin), которые подытожены в монографии [2] (см. также обзорную статью [23]). Обратное описание деформации сплошной среды и соответствующая вариационная формулировка нелинейной теории упругости (когда действие для упругого тела представлено на основе эйлерова описания и варьированию подвергается обратное отображение = Х х , t)) неожиданно оказываются удобными для исследования сингулярного упругого поля и позволяют, в частности, с иных позиций взглянуть на энергетические соотношения нелинейной механики разрушения. Сам автор этого подхода называет обратное описание деформации описанием Пиола (G. Piola) и отмечает, что обратная вариационная формулировка в сущности совпадает с использованной Пиола еще в XIX в. [24] (затем забытой и никогда на деле не применявшейся). Ясно, что и два традиционных способа описания деформации сплошного тела (в духе Лагранжа и Эйлера), и возможность расширения понятия группы инвариантности функционала действия и обобщенного варьирования — следствия универсального принципа двойственности и полной равноправности отсчетной и актуальной конфигураций тела в состоянии его деформации, пронизывающих механику деформируемых тел как единую теорию.  [c.674]

Рассмотрим вариационную постановку динамических контактных задач с односторонними ограничениями для упругих тел с трещинами в виде граничных квазивариационных неравенств. Для этого используем принцип Гамильтона — Остроградского в виде [47]  [c.98]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Метод Ритца решения задач о равновесии упругого тела основан на использовании вариационного принципа (9.8) или, в более общей формулировке, непосредственно уравнения (9.4). Этот метод состоит в следующем. Ищем решение для перемещений в виде конечной или бесконечной суммы  [c.392]

Формулировку вариационных принципов этой теории, так же как и теории упругости для сплошного тела (см. гл. 3, 6), можно обобщить, рассматривая в качестве варьируемых переменных разрывные поля перемещений, деформаций, усилий и функций напряжений. Вариационные принципы при разрывных полях параметров напряженно-деформированного состояния могут служить для построения алгоритмов расчета оболочек, в частности при использовании метода Ритца и метода конечных элементов, а также для решения некоторых контактных задач.  [c.132]

Во введении к части А дается общее представление о вариационных принципах и методах механики. Первые 10 глав посвящены формулировкам и применениям вариационных принципов и методов в теории упругодеформируемых сложных тел, скручиваемых стержней, балок, пластин, оболочек и конструкции. Первая, третья и четвертая главы носят подготовительный характер, и в них обсуждаются основные соотношения теории упругости для случаев малых и больших деформаций. Здесь же содержится изложение классических принципов виртуальной работы и дополнительной виртуальной работы, которые существенным образом используются в других главах при выводе минимальных вариационных принципов статики упругого тела. Важные обобще-  [c.5]


Мы вывели принцип виртуальной работы и связанные с ним вариационные принципы, приводящие к краевым задачам, в гл. 3. В настоящей главе мы распространим эти принципы на другие задачи теории упругости ). Мы сформулируем каждую из задач в рамках теории конечных деформаций, переходя к малым деформациям, когда это необходимо. Для описания поведения упругого тела будет использоваться прямоугольная декартова система координат. Однако благодаря инвариантности, отмеченной в гл. 4, выражения для принципов могут быть получены в произюльной криволинейной системе координат с помощью преобразования координат.  [c.127]

Принцип возможных перемещений можно использовать для решения как статических, так и динамических задач. Вариационные принципы, которые приводятся в этом разделе, можно использовать для решения только квазистатических задач (вследствие того, что инерционные силы зависят от скоростей перемещений, их нельзя ввести в функционал). В нелинейной теории упругости вариационные принципы обычно формулируются относительно полей перемещений, деформаций и напряжений (например, Ху — Васидзу, Хеллингера — Рейсснера, стационарности полной потенциальной энергии и др.). Рассмотрим некоторые вариационные принципы, сформулированные относительно полей скоростей перемещений, деформаций и напряжений, которые справедливы для упругих и неупругих тел.  [c.112]

Bee эти вариационные формулировки теоретически эквивалентны друг другу, и каждую из них удобнее принимать в зависимости от вида используемых определяющих соотношений. Аналогичные вариационные принципы предложены в [88], но сформулированы они относительно приращений, а не скоростей. Отметим, что представленные в настоящем разделе формулировки обобщенного вариационного принципа, данные относительно скоростей, являются аналогом вариационного принципа Ху — Васид-зу [67, 119] в нелинейной теории упругости. Настоящие же вариационные формулировки можно использовать как для упругих, так и для упругопластических тел при произвольной величине деформаций. Сопряженные вариационные формулировки приведены в [98], где определяющие соотношения даны в обращенном виде, т. е. скорости деформаций выражены через скорости напряжений. Сопряженные вариационные формулировки являются аналогом вариационного принципа Хеллингера — Рейсснера [67, 119]  [c.116]

Вариационный принцип Хашина—Штрикмана является обобщением вариационного принципа Лагранжа. Он был разработан авторами для исследования неоднородных упругих материалов. Наряду с исследуемым (неоднородным) телом рассматривается некоторое однородное упругое тело (тело сравнения). На основе лагранжиана строится функционал, который имеет минимум в положении равновесия, если тензор модулей упругости исследуемого тела меньше тензора модулей упругости тела сравнения и имеет в положении равновесия максимум, если тензор модулей упругости больше тензора модулей упругости тела сравнения. (Слова меньше и больше понимаются здесь в смысле определений, данных в 1 гл. 1.)  [c.57]

Не останавливаясь на эволюции основных понятий ТПР, отметим теоремы, лежащие в ее основе (они доказаны А. А. Гвоздевым и Хиллом для жестко-пластических тел, Дракером, Прагером, Гринбергом — для упруго-пластических), а также попытки получения некоторых вариационных принципов в ТПР, математически эквива-  [c.226]

Широкое развитие теории пластичности в нашей стране относится к сороковым годам. А. А. Ильюшин (1943) предложил теорию малых упруго-пластических деформаций, получившую распространение в приложениях. Им была доказана (1945, 1947) теорема о простом нагружении, позволившая на важном частном случае использовать связь между моделью нелинейно упругого тела и моделью упруго-пластической среды. Л. М. Качанов (1940), А. А. Марков (1947) и С. М. Фейнберг (1948) получили основные результаты по вариационным принципам для нелинейно упруго и жестко-пластического тел. Л. А. Галин, А. А. Ильюшин, X. А. Рахматулин, В. В. Соколовский и многие другие дали решения ряда интересных и трудных задач, положивших начало-основным научным школам по теории пластичности в СССР.  [c.392]

Проводя аналогичные преобразования для случая, когда сплошная среда представляет собой упругое тело, получим формулировку вариационного принципа Гамильтона — Остроградского в эйлеровом представлении для упругой среды  [c.444]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]


Смотреть страницы где упоминается термин Принцип вариационный для упругих тел : [c.258]    [c.6]    [c.446]    [c.439]   
Механика сплошной среды. Т.2 (1970) -- [ c.0 ]



ПОИСК



Вариационные принципы в задачах изгиба упругих пластин

Вариационные принципы в теории собственных колебаний упругих систем

Вариационные принципы в теории упругости при малых перемещениях

Вариационные принципы динамической теории упругости

Вариационные принципы и экстремальные свойства функционалов теории упругости при разрывных перемещениях, деформациях, напряжениях и функциях напряжений

Вариационные принципы нелинейной теории упругости

Вариационные принципы статики линейно-упругого тела

Вариационные принципы теории наследственной упругости

Вариационные принципы теории упругих тонких неоднородных анизотропных оболочек переменной толщины Вводные замечания

Вариационные принципы теории упругости

Вариационные принципы теории упругости для неоднородных анизотропных тел Вводные замечания

Вариационные принципы теории упругости. Исходное интегральное тождество

Вариационный принцип теории упругой устойчивости

Использование вариационных принципов для анализа и решения задач теории упругости и теории оболочек Различные формы вариационных уравнений теории упругости и теории оболочек

Классические вариационные принципы лииейной динамической теории упругости

Классические и модифицированные вариационные принципы в за дачах лииейной динамической теории упругости

Классические и модифицированные вариационные принципы в линейной статической теории упругости

Классические и модифицированные вариационные принципы в статической теории упругости при конечных перемещениях

О возможности формулирования вариационных принципов теории упругости

Общие уравнения теории упругости и постановка основных задач. Важнейшие вариационные принципы

Основные зависимости геометрически линейной теории упругости (А.ЗЛокОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УПРУГОСТИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ, ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОПостнов)

Отдел пятый ОБЩИЕ ПРИНЦИПЫ, ЗАКОНЫ, ТЕОРЕМЫ, МЕТОДЫ СТАТИКИ ДЕФОРМИРУЕМЫХ СИСТЕМ Вариационные принципы и энергетические теоремы статической проблемы упругости

Применение вариационного принципа к решению задач теории трещин в упруго-вязких средах

Принцип вариационный

Принцип вариационный для упругих тел в равновесии

Принцип вариационный для упругих тел связи

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте