Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип вариационный для упругих тел связи

Эта теория создана уже около половины века тому назад, но в литературе известны лишь немногие примеры применения ее к задачам механики деформируемых тел. Первые работы принадлежат Р. Куранту [0.9] и Э. Рейсснеру [0.13]. Р. Курант впервые применил преобразование Фридрихса для установления связи между принципами Лагранжа и Кастильяно. Э. Рейсснер [0.13], оценивая результаты своих четырех работ, посвященных вариационным принципам теории упругости, характеризует новизну использования теории [0.9] и полученную в итоге полную формулировку вариационной теоремы как вклад в теорию упругости. В отечественной литературе теория [0.9] впервые применена в работах [0.4], а впоследствии в (0.15, 0.6, 0.1] и др. Однако все эти исследования, как правило, не имеют общего характера и относятся к вариационным формулировкам в терминах стационарности функционалов. К анализу экстремальных свойств функционалов эта теория не применялась.  [c.8]


И. И. А рг ат ов. Энергетические теоремы и вариационные принципы механики упругих систем с односторонними связями // Изв. вузов. Строительство, 1998, № 9.  [c.144]

В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]

Обратим внимание на связь условия (24.12) с вариационным принципом Лагранжа теории упругости. В 4 (см. (4.5)) было установлено, что  [c.204]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

В связи с применением вариационного принципа А к исследованию упругих состояний выпуклых оболочек нас будут интересовать изометрические преобразования выпуклых поверхностей с выпучиванием выпуклых областей и образованием ребер на их границе. Оказывается, такие изометрические преобразования допускают очень простое описание. Для полноты изложения напомним некоторые факты, относящиеся к изгибанию выпуклых поверхностей.  [c.35]

В связи с методами исследования тепловых напряжений во второй главе рассматривается аналогия между задачей термоупругости и соответствующей задачей изотермической теории упругости при фиктивных объемных и поверхностных силах, излагаются вариационные принципы для задач термоупругости, являющиеся обобщениями вариационного уравнения Лагранжа  [c.7]


Во многих случаях для определения тепловых напряжений эффективно применение вариационных методов. Рассмотрим в связи с этим вариационные принципы термоупругости [83], соответствующие вариационным принципам изотермической теории упругости, предполагая, что тело находится под действием поверхностных f и объемных сил при температурном поле Т — То-  [c.45]

Дифференциальное вариационное уравнение (3.4) может показаться тривиальным следствием закона Ньютона (1.1) и условия идеальности связей (3.3). Однако содержание (3.4) несравненно обширнее. Известно — и читатель вскоре это увидит, — что принцип (3.4) может быть положен в основу механики [18]. Различные модели упругих тел, описываемые в этой книге, построены с опорой на этот принцип.  [c.34]

Таким образом, используя изложенный выше вариационный принцип, мы приходим к уравнениям равновесия и граничным условиям, записанным непосредственно в перемещениях. Отсюда очевидно, что данный принцип заключает в себе, как следствие, соотношения между напряжениями и деформациями (9.2). Это закономерно, поскольку рассматриваемый вариационный принцип выбирает из всех мыслимых геометрически возможных перемещений и статически возможных напряжений только те, которые соответствуют равновесию упругого тела при заданных внешних силах и условиях закрепления. А эти последние перемещения и напряжения отличаются от всех прочих геометрически возможных перемещений и статически возможных напряжений именно тем, что они связаны между собою соотношениями (9.2), выражающими тот закон упругости, которому подчиняется материал тела.  [c.136]

Известно, что для тел сложной формы и со сложным характером нагружения наиболее целесообразной является итерационная схема решения контактных задач, предусматривающая использование одного из численных методов, например вариационно-разностного, или метода конечных элементов. В данном случае связь между нагрузками и перемещениями на каждом шаге итерации находилась при помощи метода конечных элементов, который позволил при расчете учесть особенности геометрии диска, наличие сил трения в зоне контакта пальцев с диском, возможную геометрическую нелинейность, связанную с большими перемещениями, и некоторые другие особенности. При решении задачи использовались четырехугольные изопараметрические элементы, позволившие сравнительно просто осуществить автоматизированную подготовку исходной информации и несколько уменьшить ширину ленты глобальной матрицы жесткости, что весьма существенно в условиях дефицита оперативной памяти вычислительной машины. Не останавливаясь на подробностях способа нахождения связи между нагрузками и перемещениями, который в принципе уже описан ранее, изложим непосредственно метод нахождения контактных напряжений на контурах отверстий упругого диска.  [c.76]

В данной главе прежде всего позпакомимся с двумя основными принципами — Лагранжа и Кастильяно, а также с некоторыми другими принципами. Укажем на связь этих принципов и вариационной формулировки задачи теории упругости с дифференциальной формой этой задачи.  [c.49]

В настоящее время профессор Васидзу подготовил переработанное издание своей книги, в которую включено новое приложение I. Это приложение дает представление об основных вариационных принципах, которые часто используются как базис для математической формулировки задач теории упругости и пластичности, включая новые вариационные принципы, разработанные в связи с методом конечных элементов. Так же как и в первом издании, приложение I написано ясно, кратко и элегантно — стиль, вообще свойственный профессору Васидзу.  [c.11]

Принципы Лагранжа и Кастильяно называют энергетическими вариационными принципами, поскольку они связаны с понятием упругой энергии тела, равной реаУ.  [c.449]


Вариационные принципы при учете температурных слагаемых. Уравнение теплопроводности рассматривается в его классической форме Фурье (3.6.8) гл. III, а в задаче теории упругости сохраняется статическая постановка, то есть пренебрегают изменениями во времени напряженного состояния, вызываемыми нестационарностью температурного поля. Это позволяет рассматривать температуру как неварьируемый при варьировании напряженного состояния внешний фактор и в соответствии со сказанным в п. 1.14 формально трактовать наличие температурного поля как поля объемных сил с потенциалом (1.14.5) и поверхностных сил (1.14.6). Учитывается действие этих сил и реактивных сил на Oj, создаваемых связями, обеспечивающими заданные перемещения на этой части поверхности тела.  [c.161]

Путем наложения некоторых связей в уравнениях обобщенного вариационного принципа можно получить сформулированные относительно скоростей уравнения вариационного принципа Хилла для упругих и упругопластических тел при произвольной величине деформаций [47, 73, 78, 79, 81]. Рассмотрим уравнения (3.6). Предположим, что варьируемые поля скоростей перемещений й принимают заданные значения на границе qSu, т.е. выполнены кинематические граничные условия в (3.6). В этом случае исчезает последний член в правой части (3.8). Далее предполагаем, что материальная производная тензора градиента деформации не является произвольной варьируемой величиной, а выражается через материальную производную тензора градиента перемещения с помощью четвертого равенства (3.6). Тогда исчезает второй член в правой части (3.8). Предположим также, что материальная производная первого тензора напряжений Пиола — Кирхгофа не является независимой варьируемой величиной, а выражается через материальную производную тензора градиента деформации с помощью последней формулы (3.6), т.е. определяющие соотношения предполагаются заданными. В этом случае вариационное уравнение (3.7) преобразуется в следующее  [c.117]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]

Так как корректное выражение для приходящейся на единицу объема работы деформирования, совершаемой шестью компонентами напряжения аж, Оу, Ог, Туг, Тгх, Хху В бесконсчно малом элементе упругого материала, невозможно вывести до тех пор, пока не постулирован закон связи между напряжениями и деформациями, то использование для упругой среды вариационных принципов, связанных с энергией деформации ю, предполагает справедливость линейных связей между напряжениями и деформациями (приведенное выше второе необходимое условие).  [c.144]

В работах Л. Н. Воробьева (1956), Н. А. Кильчевского (1963, 1964), Д. И. Кутилина (1947), В. В. Новожилова (1958) рассмотрены общие теоремы нелинейной теории упругости. Расширенные вариационные начала (типа предложенных в линейной теории Э. Рейсснером) сформулированы К. 3. Галимовым (1952) и И. Г. Терегуловым (1962). Предложенные вариационные принципы содержат в качестве независимо варьируемых функциональных элементов перемещения, напряжения и деформации, свободные от каких-либо связей внутри и на границе тела. Вариационные начала  [c.74]

Применение вариационного уравнения (4.8) встречает определенные технические трудности. Часть этих трудностей связана, например, с тем, что, задаваясь распределением напряжений в виде функций от координат, содержащих свободные параметры, при вычислении интеграла по объему от потенциала Ф мы не можем представить результата в виде явной функции этих параметров. Чтобы обойти эту трудность, И. Г. Терегулов (19ХХ) предложил видоизменение вариационного принципа. Предположим, что Ф = Ф (дг , 5), где — любые структурные параметры, 5 — однородная функция первой степени от ац, упругость предполагается линейной с тензором податливостей Положим дФЮз = V з) и рассмотрим следующий функционал  [c.142]


Широкое развитие теории пластичности в нашей стране относится к сороковым годам. А. А. Ильюшин (1943) предложил теорию малых упруго-пластических деформаций, получившую распространение в приложениях. Им была доказана (1945, 1947) теорема о простом нагружении, позволившая на важном частном случае использовать связь между моделью нелинейно упругого тела и моделью упруго-пластической среды. Л. М. Качанов (1940), А. А. Марков (1947) и С. М. Фейнберг (1948) получили основные результаты по вариационным принципам для нелинейно упруго и жестко-пластического тел. Л. А. Галин, А. А. Ильюшин, X. А. Рахматулин, В. В. Соколовский и многие другие дали решения ряда интересных и трудных задач, положивших начало-основным научным школам по теории пластичности в СССР.  [c.392]

Известно, что динамика гамильтоновых систем (в том числе систем с упругими отражениями) подчиняется вариационным принципам. В связи с этим обстоятельством характеристики периодических траекторий гамильтоновых систем можно разбить на два класса динамические и геометрические. Первые определяются отображением Пуанкаре, соответствующим данному периодическому решению уравнений движения. К ним относятся величины характеристических показателей, свойства невырожденности (по Пуанкаре) и орбитальной устойчивости. Вторые являются характеристиками периодической траектории как критической точки функционала действия. К ним относятся индекс Морса, невырожденность по Морсу, а также введенный ниже определитель Хилла.  [c.157]

Уточненные по Тимошенко уравнения поперечных колебаний стержня выведены с помощью принципа Гамильтона— Остроградского в работе D. Raskovi a [1.293] (1958). Вариационный подход применяли также М. К. Newman [1.264] (1955) и Е. Volterra [1.336—1.344] (1956—1961). Последний называет свой прием методом внутренних связей. Идея сводится к тому, что вектор перемещений представляется в виде отрезка степенного ряда по поперечной координате с неизвестными коэффициентами, которые затем определяются из вариационного принципа Гамильтона — Остроградского. Замена бесконечного ряда отрезком эквивалентна наложению на упругую систему дополнительных внутренних связей геометрического характера, в связи с чем автор ввел соответствующий термин. Полученные уточненные уравнения поперечных колебаний соответствуют приближению Тимошенко. Более подробное рассмотрение метода дано в 15 настоящего обзора.  [c.46]

Это условие выполняется для всех точек в области Q и является голономной связью, наложенной на перемещения точек механической системы. Вопрос об определении независимых лагранжевых координат, посредством которых выражаются перемещения точек упругой срецы, остается открытым. Вариационный принцип Д Алам-бера-Лагранжа имеет вид  [c.281]


Смотреть страницы где упоминается термин Принцип вариационный для упругих тел связи : [c.11]    [c.594]    [c.439]    [c.4]    [c.191]   
Механика сплошной среды. Т.2 (1970) -- [ c.443 ]



ПОИСК



Принцип вариационный

Принцип вариационный для упругих тел

Ряд вариационный

Связь упругая



© 2025 Mash-xxl.info Реклама на сайте