Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения равновесия упругого тела в перемещениях

Во второй половине мемуара для анализа равновесия упругого тела (в той же молекулярной постановке) Навье применил принцип виртуальных перемещений и в результате получил еще раз те же уравнения равновесия, а также выражение граничных условий на поверхности тела, где задано распределение напряжений. В заключение он дал уравнения колебаний упругого тела, вредя соответствующие инерционные члены.  [c.49]


Основная задача математической теории упругости состоит в отыскании решения уравнений равновесия упругого тела заданной формы, когда заданы либо перемещения поверхности, либо поверхностные нагрузки. Известны  [c.163]

Уравнения теории упругости неоднородного тела в перемещениях с учетом температурного поля применительно к условиям плоской деформации получаются из (4.6), при W — 0. При плоском напряженном состоянии их можно вывести обычным методом с использованием уравнений равновесия (4.1) и закона Гука (4,4).  [c.134]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]

В гл. 1 и 2 книги мы будем рассматривать теорию упругости при малых перемещениях (геометрически линейную теорию упругости) и выведем принцип виртуальной работы и связанные с ним вариационные принципы для задачи о статическом равновесии упругого тела, находящегося под действием массовых (объемных) сил, при заданных граничных условиях [1,2 ]. Для описания трехмерного пространства, в котором рассматривается тело, применяются ортогональные декартовы координаты (х, у, z). В геометрически линейной теории упругости компоненты перемещений и, V, W в точке тела считаются столь малыми, что уравнения задачи выполняются в линейном приближении. Запишем эти линеаризованные уравнения  [c.23]


Используя уравнения равновесия упругости (1.1.7) и зависимости (3.1), построим вектор перемещений точки тела асимптотическим методом аналогично тому, как это было сделано в 1.  [c.96]

Таким образом, используя изложенный выше вариационный принцип, мы приходим к уравнениям равновесия и граничным условиям, записанным непосредственно в перемещениях. Отсюда очевидно, что данный принцип заключает в себе, как следствие, соотношения между напряжениями и деформациями (9.2). Это закономерно, поскольку рассматриваемый вариационный принцип выбирает из всех мыслимых геометрически возможных перемещений и статически возможных напряжений только те, которые соответствуют равновесию упругого тела при заданных внешних силах и условиях закрепления. А эти последние перемещения и напряжения отличаются от всех прочих геометрически возможных перемещений и статически возможных напряжений именно тем, что они связаны между собою соотношениями (9.2), выражающими тот закон упругости, которому подчиняется материал тела.  [c.136]

Можно показать, что из этого условия вытекают уравнения равновесия во внутренних точках тела и силовые граничные условия на поверхности тела Sp. Этих уравнений достаточно для решения задач вязкоупругости, так как их нужно понимать как уравнения равновесия в перемещениях (обобщение, уравнений Ляме на случай вязко-упругого тела).  [c.356]

Для решения задач устойчивости, как мы уже выяснили, уравнения равновесия должны составляться для деформированного состояния упругого тела. Соответственно, применяя вариационное уравнение, в нем необходимо удерживать квадратичные члены в формулах для деформаций, как это было сделано для общей теории в 12.2 и для задачи об устойчивости стержня в 12.3. В задачах изгиба пластин достаточно удерживать те квадратичные члены, которые зависят от прогиба w, производные от перемещений мы сохраним лишь в первой степени. Повторяя вывод 12.4, мы найдем, что формулы (12.4.3) сохранят силу и в этом случае, но компоненты деформации срединной поверхности нужно будет вычислять по формулам  [c.411]

Решение задачи для конкретного упругого тела с заданными поверхностными и объемными силами требует определения компонент напряжений или перемещений, которые удовлетворяют соответствующим дифференциальным уравнениям и граничным условиям. Если в качестве основных неизвестных выбраны компоненты напряжения, то следует удовлетворить 1) уравнениям равновесия (123), 2) условиям совместности (125) и 3) граничным условиям (124). Обозначим через ... напряжения, вызванные поверхностными силами X, Y, Z и массовыми силами X, Y, Z.  [c.252]

В линейной теории упругости все перемещения точек тела считаются настолько малыми, что это позволяет не учитывать их влияние на взаимное расположение нагрузок и расстояния от них до любых точек тела. В связи с этим уравнения равновесия относятся к недеформированному телу.  [c.10]

Для решения задач теории упругости в перемещениях необходимо уравнения равновесия для точек внутри тела (уравнения Навье) представить в перемещениях. С этой целью выразим напряжения через деформации в форме Лямэ, а деформации представим через перемещения по уравнениям Коши.  [c.54]

Реакции связей определяю тся из уравнений равновесия в соответствии с принципом начальных размеров. Согласно этому принципу перемещения точек тела в пределах упругих деформаций настолько малы по сравнению с размерами самого тела, что ими можно при составлении уравнений равновесия пренебречь.  [c.122]

Разрешающие уравнения численных методов решения задач теории упругости представляют из себя обычно уравнения равновесия в перемещениях, которые и устанавливают связь между силами, действующими на тело, и перемещениями его точек (см. ниже)  [c.115]


Рассмотрим колебания твердого тела, находящегося в потенциальном поле сил (гравитационном поле Земли, поле упругих сил и т. д.). Положение твердого тела при его колебаниях относительно положения равновесия будем определять шестью обобщенными координатами , т), б, ф, ф, первые три из которых являются координатами центра масс тела, а остальные — углами Эйлера, выбранными по одному из известных способов. В рассматриваемой задаче будем считать, что перемещения т), и углы б, г[), ф не малые, но такие, что в уравнениях движения твердых тел с приемлемой точностью могут быть сохранены только члены не выше третьего порядка относительно координат и их производных.  [c.264]

Уравнения равновесия в перемещениях изотропного упругого тела приводятся к виду  [c.678]

Тогда эти уравнения примут известный вид уравнений равновесия в перемещениях линейно-упругого изотропного тела  [c.730]

Рассмотрим теперь соотношение между основными величинами. Принцип равновесия достаточно понятен, и в настоящее время ни он, ни геометриче ,ские соотношения между деформациями и перемещениями не нуждаются в обсуждении. Здесь, однако, удобно обсудить тот-факт, что для случая упругого тела, т. е. для тела, чей материал можно считать подчиняющимся закону Гука, а напряжения не превышают предела упругости, уравнения равновесия можно заменить целиком либо частично рассмотрением энергии упругой деформации, т. е. потенциальной энергии, накопленной при упругом,деформировании тела (например, энергия, накопленная при заводе часовой пружины), которую можно подсчитать как сумму работ, совершаемых при деформировании каждой части тела.  [c.23]

Будем искать решение уравнений теории упругости для тела малой толщины, имеющее медленную изменяемость по переменным о и / по сравнению с изменяемостью по г. Уравнения равновесия (1.1.7) запишем в перемещениях, используя формулы (1.1), затем сделаем преобразование масштаба (1.2.3). Система координат применяется такая же, как и в эластомер)-ном слое. В результате преобразования масштаба переменных производные от функций по новым переменным имеют тот же порядок, что и сами функции. Параметры Ламе Л, В и переменные т), есть безразмерные величины порядка единицы.  [c.87]

В то же самое время они получат перемещение и, а это вызовет упругие напряжения в соответствии с равенствами (III. 11) или (III. 20) или некоторыми другими реологическими уравнениями. Предположим, что тело является шаром радиусом Ro, центр которого закреплен тогда по условиям симметрии можно принять, что направления различных смещений и и скоростей v во всех точках проходят через центр. Каждому р соответствует некоторая вполне определенная величина е и, следовательно, некоторый вполне определенный радиус R, при котором внутреннее напряжение р, возникшее в теле благодаря деформации, уравновесит внешнее давление р. Если р приложено мгновенно, то это значит, что, пока Ro не достигнет R, равновесия не будет это вызовет появление кинетиче- Кой энергии. Когда шар будет сжат до объема V, р уравновесит р, но частицы будут двигаться по направлению к центру, так как они обладают кинетической энергией. Это вызовет увеличение р  [c.62]

Располагая вариационными уравнениями Лагранжа и Кастильяно, можем теперь дать вариационную постановку задачи теории упругости если задача решается в п е р е м е -щ е н и я X, то требуется найти такие перемещения и, которые непрерывны внутри тела, удовлетворяют геометрическим граничным условиям и минимизируют полную потенциальную энергию системы V если задача решается в напряже-н и я X, то требуется найти такие напряжения а, которые удовлетворяют уравнениям равновесия и статическим граничным условиям и минимизируют полную дополнительную энергию системы У,  [c.43]

Ураанения равновесия упругого тела в перемещениях. Только-что выведенные уравнении, связывающие тензор напряжений и тензор деформации ( 11, ур-ния (12) и (14)] совместно с условиями равновесия  [c.32]

Весьма часто мы имеем дело с задачами о равновесии упругого тела в этом случае ус1сорения равны нулю и уравнение (11.14) формулирует принцип Лагранжа, т. е. начало возможных перемещений  [c.328]

Начало возможных перемещений Лагранжа. Применительно к твердым телам начало возможных перемещений сформулировано Лаграюкем в его Аналитической механике (1788 г.). К упругим телам (стержневой системе) этот принцип впервые был применен Пуассоном в 1833 г. Подобно тому, как для твердых тел начало возможных перемещений позволяет получить уравнения равновесия твердого тела, так и для упругих тел начало возмояшых перемещений MOJiieT заменить уравнения равновесия тела.  [c.45]

Для решения задач упруго-пластического деформирования тела в перемещениях необходимо представить уравнения равновесия тела (уравнения Иавье — Коши) в перемещениях.  [c.287]

Метод Ритца решения задач о равновесии упругого тела основан на использовании вариационного принципа (9.8) или, в более общей формулировке, непосредственно уравнения (9.4). Этот метод состоит в следующем. Ищем решение для перемещений в виде конечной или бесконечной суммы  [c.392]

Можно заключить, что классическая теория описывает поведение сред с микроструктурой только в том случае, если элементы микроструктуры как целые имеют пренебрен имо малые повороты и перемещения. В противном случае уравнения совместности (8) для всего тела не имеют смысла. В однородном теле в исходном состоянии упругая деформация как бы нодготавлив-ает микроструктуру, и если поворотами и перемещениями элементов нельзя, пренебречь, классическая теория упругости не в состоянии описать процесс деформирования. Как отмечалось выше, нелинейная теория, учитывающая повороты, в какой-то степени берет во внимание образование микроструктуры, т. е. устойчивость упругого равновесия. Но в этом случае уравнение сплошности для тела в целом теряет смысл.  [c.103]


Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]

Строгая математическая модель деформаций дЛя всей конструкции ЭМУ, состоящей из п тел, в соответствии с теорией упругости представляет совокупность п систем известных уравнений физических (закон Гука) для составляющих напряжений в точке, геометрических (условия совместности) для деформаций в точке от перемещений и статических (уравнения равновесия) для связи напряжений с проекциями объемных сил совместно со взаимосвязанными геометрическими и граничными условиями [3]. При этом предполагается, что нагрузки на элементы конструкции заданы. Это существенно, например, при рассмотрении температурных полей и деформаций и их взаимовлияршя.  [c.120]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]

Таким образом, расчет упругого контакта тел (определение -напряжений в зоне контакта, размеров этой зоны и кинематического перемещения тел) сводится к решению интегральных уравнений (1.21) с учетом уравнений равновесия и краевых условий. Реще-пие этой системы может быть получено заменой интегральных уравнений конечной системой линейных алгебраических уравнений (приближенное решение).  [c.12]

Возможен случай, когда механическая система является системой с распределенными пара,метрами. К тако.му случаю относятся задачи о деформировании упругих тел магнитным полем. Эти задачи могут быть нелинейными, даже если упругие перемещения малы и справедливы уравнения линейной теории упругости. Нелинейность при этом обусловливается зависимостью пондеромоторных сил от перемещений. К указанному классу относятся два типа задач- о равновесии ферромагнитных тел, расположенных на расстояниях, сравнимых с малыми упругими перемещениями, и о равновесии близко расположенных проводящих стержней с токами. Постановка этих задач и некоторые результаты их исследования приведены в работе [16]. Математически аналогичная задача о равновесии электростатически заряженных капель рассмотрена в работе [181.  [c.340]

Итак, мы получили все определяющие соотношения для задачи линейной теории упругости уравнения равновесия (1.4), соотношения деформации—перемещения (1.5), соотношения напряжения—деформации (1.6) внутри тела V и граничные условия в напряжениях и перемещениях (1.12), (1.14) на границе тела S. Эти соотношения показывают, что мы имеем 15 неизвестных, а именно 6 компонент напряжений, 6 компонент дефотмаций, 3 компоненты перемещения в 15 уравнениях (1.4) и (1. , (1.6). Нашей задачей является решить эти 15 уравнений при граничных условиях (1.12) и (1.14). Поскольку все уравнения линейны, то для построения решений может быть использовано правило суперпозиции. Следовательно, мы получили линейные соотношения между заданными величинами, скажем нагрузками на Si, и неизвестными, какими являются напряжения и перемещения внутри тела.  [c.26]

Как известно, работа внешних сил на статически им соответствующих перемещениях равна удвоенной упругой энергии тела. Покажем справедливость аналогичного уравнения, включающего виртуальные перемещения и деформации. Умножим уравнение равновесия в предположении для простоты отсутствия массовых сил на 6щ, проинтегрируем по объему и используем формулы ГауссагОстроградского и Коши  [c.207]

Принцип возможной (виртуальной) работы может быть выведен из уравнений равновесия и наоборот, что указывает на их взаимозаменяемость. Представим себе, что тело заменяется эквивалентной системой частиц, соединенных невесомыми упругими пружинами. Пусть и, v, w — перемещения характерной частицы в направлении осей х, у, z, а du, dv, dw — изменения этих перемещений. Затем для каждой частицы запишем уравнения равновесия 2 /х = 2 /у = 2 /г = умножим каждое из этих урав-, нений соответственно на перемещения du, dy, dw каждой частицы и сложим все уравнения. В получающемся при этом выражении произведения компонент нагрузок на компоненты перемещений (в направлении нагрузок и в месте их приложения) складывают-, ся в pa6oTyj совершаемую нагрузками когда соответствующие произведения, включающие силы, возникающие из-за действия пружин, складываются с отрицательным по знаку изменением "энергии упрулЬй деформации, их сумма получается равной нулю.  [c.25]

Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

Следует отметить, что впервые задача о расчёте износа сопряжений была поставлена А.С. Прониковым [117] в предположении, что контактирующие тела абсолютно жёсткие. В этом случае эволюция формы поверхности определяется главным образом геометрией взаимодействующих тел и характером их относительных перемещений. Эпюра давлений приближённо вычисляется с использованием уравнений износа (7.13) и равновесия (7.12). Такой приближённый подход упрощает постановку задачи и даёт возможность рассчитать эволюцию макроформы тел и распределение износа по поверхности взаимодействующих тел в различных сопряжениях [118]. Постановка задачи об износе локального контакта упругих тел впервые изложена М.В. Коров-чинским [85].  [c.366]


Смотреть страницы где упоминается термин Уравнения равновесия упругого тела в перемещениях : [c.91]    [c.18]    [c.149]    [c.236]    [c.74]    [c.200]    [c.211]    [c.34]   
Смотреть главы в:

Математическая теория упругости Выпуск1 Изд2  -> Уравнения равновесия упругого тела в перемещениях



ПОИСК



Равновесие тела упругого

Упругие перемещения

Упругие тела

Уравнение перемещений

Уравнения Уравнения упругости

Уравнения равновесия в перемещения

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения упругого КА

Уравнения упругого равновесия в перемещениях

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте