Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения краевого эффекта в теории оболочек

Уравнения краевого эффекта в теории оболочек  [c.427]

Решение уравнения Гельмгольца (5.3), от которого зависят перемещения и другие величины, может быть найдено различными методами. Универсальными являются численные и вариационные методы, во многих случаях можно получить точное или приближенное аналитическое решение. Если параметр 12с велик, то решение можно записать в виде суммы основного и краевого эффектов, причем краевой эффект выражается через экспоненту аналогично простому краевому эффекту в теории оболочек.  [c.234]


Рассматриваются итерационные методы решения уравнений теории оболочек. Вначале формулируются итерационные процессы, позволяющие строить интегралы, соответствующие безмоментному и чисто моментному напряженным состояниям, а также простому краевому эффекту. Процессы существенно основываются на малости относительной толщины оболочек и строятся формально в том смысле, что не делается попыток исследовать их асимптотические свойства. Однако существование формальных разложений для безмоментного и чисто моментного напряженных состояний и для простого краевого эффекта в какой-то мере может служить обоснованием тех предположений, которые были положены в основу приближенных методов построения этих напряженных состояний в части III.  [c.271]

В области теории многослойных анизотропных оболочек многие вопросы еще ждут решения, хотя путь этого решения заложен в известной мере достижениями теории однородных изотропных оболочек. Отметим здесь только некоторые из этих вопросов, которые представляются наиболее существенными 1) какими уравнениями можно описать медленно изменяющиеся напряженные состояния 2) существуют ли (и при каких условиях) напряженные состояния, которые в классической теории называют простыми краевыми эффектами каково их число на краю 3) при каких условиях происходит вырождение простых краевых эффектов в обобщенные краевые эффекты с более медленным затуханием от края 4) какое число краевых эффектов типа Сен-Венана порождает конкретная теория многослойной оболочки можно ли их группировать в отдельные классы по свойствам напряженных состояний и адекватна ли данная теория для описания краевых эффектов типа Сен-Венана При этом нельзя упускать из виду реальные возможности определения 3 + 2д коэффициентов упругой заделки на каждом краю именно здесь существует большой разрыв между теорией и практикой.  [c.261]

Формально безмоментная теория вытекает из общей моментной при А -> О, если ограничиться внешним разложением в методе сращивания ( 7.5). Внутреннее разложение соответствует уравнениям краевого эффекта [20]. В общем случае нагружения оболочки граничные условия для безмоментной теории являются результатом сращивания. Отметим, что расщепление решения на безмоментное и краевой эффект не всегда происходит важно, в частности, допускает поверхность изгибания или нет. Не имея возможности углубляться в эти сложные вопросы, ограничимся представлением о безмоментной оболочке как о материальной поверхности, состоящей из точек без вращательных степеней свободы.  [c.230]


Наконец, уравнения теории пологих оболочек в следующих работах были истолкованы, как уравнения краевого эффекта  [c.220]

На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]

Решения, полученные на основе безмоментной теории, если они оказываются медленно изменяющимися и удовлетворяют граничным условиям на контуре оболочки, мало отличаются от точных. Если эти решения не удовлетворяют граничным условиям, наложенным на нормальные перемещения, углы поворота или соответствующие усилия, то часто можно получить достаточно точный результат, учитывая дополнительно краевой эффект. Кроме того, как и в симметрично нагруженных оболочках вращения (гл. 3), медленно изменяющиеся решения безмоментной теории мол<но рассматривать как приближенные частные решения уравнений общей теории.  [c.289]

Интегрирование этой системы уравнений представляет значительные трудности. Точное решение задачи показывает, что у края возникает напряженное состояние, имеющее форму быстро затухающего колебания при удалении от этого края. Это позволяет построить приближенную теорию расчета краевого эффекта. Анализ функций, характеризующих затухание колебания с большим коэффициентом затухания, показывает, что значение производной такой функции всегда больше значения самой функции на величину коэффициента затухания. Поэтому при суммировании усилий, деформаций и перемещений в оболочке с их производными можно принимать во внимание лишь производные высшего порядка.  [c.206]

Дальнейший ход решения задачи заключается в следующем. Производится расчет оболочки по безмоментной теории из уравнений (10.3) определяются усилия N° и М°- Общее решение задачи получается суммированием усилий краевого эффекта и усилий, полученных по безмоментной теории. Затем из граничных условий определяются произвольные постоянные общего решения.  [c.209]

Последовательность решения задач с использованием теории краевого эффекта состоит в следующем. Вначале находят силы и перемещения в оболочке по безмоментной теории. Сила Т и перемещение и определяются только этими зависимостями. Нормальное перемещение и окружная сила составляются из двух слагаемых. Из уравнения (9.6.11) определяют Wg. Изгибающий момент и перерезывающую силу находят по зависимостям (9.6.12). Все моментные части сил и перемещений выражаются через константы С и С- . Их определяют из граничных условий или условий сопряжения. Если оболочка имеет несколько участков, для каждого сопрягаемого края записывается решение вида (9.6.11) со своими коэффициентами к. Из условия равенства нормальных перемещений, углов поворота нормали, изгибающих моментов и перерезывающих сил находят все искомые значения констант.  [c.154]


Рассмотрим граничные условия на торцах оболочки х = О и х — /). Поскольку в полубезмоментной теории условиями Mj = О, Qi О, Ё2 = О исключен краевой эффект, то на краях оболочки можно ставить граничные условия только для тангенциальных сил Т , S или перемещений и, V. Но усилие 5 и перемещения и, w прямо не входят в уравнения (6.66) и (6.67). Поэтому необходимо граничные условия выразить через перемещение ш и его производные по л на краях оболочки.  [c.163]

Существуют некоторые условия, при которых напряженно-деформированное состояние оболочки заведомо обладает такими свойствами, и условия выявятся ниже, а пока мы постулируем, что они выполняются. Тогда в качестве приближенного подхода к решению задач теории оболочек может быть использован метод расчленения напряженно-деформированного состояния или, просто, метод расчленения. Его идея заключается в следующем. Основное напряженное состояние и краевые эффекты по своим свойствам существенно отличаются друг от друга. Поэтому существенно различны и те дифференциальные уравнения, которыми приближенно описываются эти напряженные состояния. На этом базируется основная идея метода расчленения строить на первых этапах расчета основное напряженное состояние и краевые эффекты раздельно (пользуясь для этого различными вариантами приближенных дифференциальных уравнений) и вводить их в совместное рассмотрение только для выполнения граничных условий, так как только эта операция и обусловливает их взаимодействие. К подробностям реализации метода расчленения мы вернемся в главе 9 и особенно подробно обсудим их в части IV, а сейчас обратимся к основному напряженному состоянию и примем (пока без объяснений) следующее  [c.97]

В некоторых случаях (часто встречающихся в практических задачах) в процессе применения метода расчленения построение основного напряженного состояния выделяется в совершенно самостоятельную задачу. Это происходит тогда, когда, не вводя в рассмотрение краевые эффекты, удается из четырех граничных условий общей теории оболочки выделить два граничных условия, которые надо учитывать при интегрировании уравнений (7.1.1)—  [c.103]

Таким образом, из предположения I, в частности, следует, что при Построении простого краевого эффекта коэффициенты уравнений теории оболочек в первом приближении надо рассматривать как постоянные по величины. Конечно, это будет неверно, если в рассматриваемой области (вблизи Y)  [c.116]

Разумеется, среди решений уравнений (12.31.1) содержатся и такие, при построении которых надо учитывать как члены с оператором d /da i, так и члены с оператором М, на равных основаниях. Это будут, очевидно, решения, соответствующие обобщенным краевым эффектам ( 11.25, 11.26), в том числе и вырожденным. Наконец, существуют и такие интегралы уравнений теории цилиндрических оболочек, которые при помощи приближенной системы (12.31.1) нельзя строить даже в самом грубом приближении. Не имея возможности войти в детали этого вопроса, мы сформулируем только окончательные результаты. Они получат подтверждение в части V при рассмотрении круговой цилиндрической оболочки.  [c.172]

Понятие о простом краевом эффекте было введено в 8.9. В круговой цилиндрической оболочке его можно определить как напряженно-деформированное состояние, связанное с большими корнями характеристического уравнения, а соответствующая приближенная теория может быть построена по схеме, которая была уже дважды применена в 24.11, поэтому мы здесь сократим пояснения.  [c.370]

Асимптотическая точность итерационной теории оболочек для чисто моментных напряженных состояний и для обобщенных краевых эффектов, как показывает оценка (27.12.8), понижается. Однако можно показать, что-в этих случаях существует такая модификация итерационных процессов интегрирования уравнений теории упругости, при которой погрешности исходного приближения снова попадают в рамки оценки (27.8.1). Соответствующие подробности громоздки, и не останавливаясь на них, сформулируем, некоторые окончательные результаты. Формулы (26.3.4), (26.3.12), (26.3.18),  [c.425]

Особенно часто пользуются уравнениями (1.171) при расчете пологих оболочек, ввиду чего их нередко называют уравнениями теории пологих оболочек. Однако следует помнить, что круг применения уравнений (1.171) этим не ограничивается. Они с успехом могут быть использованы и при расчете оболочек нулевой гауссовой кривизны и при исследовании моментного краевого эффекта (о нем речь пойдет ниже), поскольку в последнем случае перемещения и напряжения являются быстро изменяющимися функциями одной из координат срединной поверхности.  [c.71]

Уравнения (5.1) - (5.3) справедливы лишь при условиях малости производных ЭЛ /да и ЭЛ/ Э]3 в местах резкого изменения толщины оболочки (например, на границе оболочки) возникает краевой эффект, для изучения которого обычное приближение теории оболочек не годится и нужно так или иначе привлекать трехмерные уравнения теории упругости. Условие малости указанных производных, очевидно, эквивалентно уравнению (5.4), т.е. существованию некоторого малого числа.  [c.260]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]


При исследовании оболочек нулевой кривизны и пологих оболочек, срединная поверхность которых изометрична плоской пластинке, нередко за вспомогательное принимается состояние пластинки, что упрощает построение ядер, но вместе с тем меняет и их структуру. В последнее время выдвинута идея о применении фокусированных ядер, т. е. быстро затухающих вспомогательных состояний, для улучшения сходимости вычислительного процесса (Н. А. Кильчевский, 1960 Н. А. Кильчевский, X. X. Константинов и Н. И. Ремизова, 1966). Пока же весь этот круг вопросов характеризуется различными постановками задач, выдвижением новых способов и отсутствием конкретного опыта, добываемого прж решении задач приведения до логического конца, т. е. до определенной системы двумерных уравнений. Наибольший интерес представляет решение задач, при которых напряженное состояние оболочки должно быть найдено при помощи уравнений теории упругости (например, краевые эффекты типа Сен-Венана, состояние около сосредоточенной нагрузки, около фронтов распространения возмущений и т. д.).  [c.265]

Краевой эффект в оболочках. Если напряженное состояние в оболочке является в основном бёзмоментным и интенсивность напряжений достаточно велика, напряженное состояние краевого эффекта вблизи закрепленного края может рассчитываться, как поправка к основному напряженному состоянию. Эта идея была реализована И. Г, Терегуловым, который использовал в зоне краевого эффекта уравнения, линеаризованные около основного напряженного состояния, которое считается без-момертным и, следовательно, известным. Теория краевого эффекта при этих предположениях оказывается подобной теории краевого эффекта в упругих оболочках, В качестве иллюстрации была рассмотрена задача о краевом эффекте в цилиндрической круговой оболочке, сжатой в осевом направлении. Краевой эффект в цилиндрической оболочке рассматривался также И, В, Стасенко (1962, 1963).  [c.138]

Разработка всех этих вопросов имеет длительную историю. Так, например И. Я. Штаерман (1924) указал на целесообразность раздельного определения основного (безмоментного) напряженного состояния и краевых эффектов в оболочках вращения при осесимметричной нагрузке еще более сорока лет тому назад. В начале тридцатых годов произошло бурное развитие методов расчета цилиндрических оболочек, в основном благодаря успешным исследованиям В. 3. Власова (1933, 1936), приведшим к варианту расчета (получившему в наше время название полубезмомент-ной теории — по терминологии В. В. Новожилова, 1951), описывающему обобщенные краевые эффекты около асимптотического края. Позже в работах А. Л. Гольденвейзера (1947, 1953) были даны обобщения упрощенного расчета краевых эффектов в статике оболочек нулевой гауссовой кривизны произвольного очертания и отрицательной гауссовой кривизны около асимптотического края. Результаты этих исследований показали, что для недлинных оболочек полученные соотношения представляют собой частные случаи так называемой технической моментной теории оболочек (по терминологии В. 3. Власова, 1944), предназначенной для расчета напряженных состояний с большим показателем изменяемости. В тензорной записи разрешающее уравнение этой теории имеет в смешанной форме следующее представление  [c.237]

В литературе принято называть эти уравнения уравнениями теории пологих оболочек. Соответствующие решения оказываются затухающими на расстоянии по дуге порядка X = 1/Rh. Многие авторы рекомендуют применять их и для оболочек, размер которых в плане существенно больше, чем Я. Так, Власов рекомендовал эти уравнения для оболочек, у которых стрела подъема не превышает 1/5 пролета, никак не оговаривая при этом относительную толщину. Многочисленные расчеты с помощью приближенных уравнений (12.16.4) и уравнений точной теории, которые мы здесь не приводим, показали, что для оболочек, применяемых обычно в строительной практике, разница сравнительно невелика и рекомендация Власова может считаться практически обоснованной, хотя строгий анализ подтверждает пригодность уравнений (12.16.4) лишь для оболочек, размер которых в плане имеет порядок X, или для исследования краевых эффектов в оболочках положительной гауссовой кривизны. Последняя оговорка существенна. В оболочках отрицательной кривизны состояния изгиба могут простираться сколь угодно далеко вдоль асимптотических линий. В оболочках нулевой кривизны, например цилиндрических, изложенная в 12.13 теория применима далеко не всегда. Действительно, приближенная теория изгиба и кручения тонкостенных стержней открытого профиля, изложенная в 9.15, по существу представляла собою некоторый упрощенный вариант теории оболочек. Краевой эффект от бимоментной  [c.428]

Расчет обаточек с использованием общей моментной теории связан с решением краевых задач и интегрированием сложной системы уравнений в частных производных. Широко известны численные способы решения этих уравнений. Приближенные теории построены на дополнительных упрощениях безмомент-ная теория оболочек теория краевого эффекта полубезмоментная теория цилиндрических оболочек теория пологих оболочек.  [c.151]

Интегралы, соответствующие характеристикам N, с некоторой степенью приближенностн определяются уравнением (П.3.16), а интегралы, соответствующие характеристикам L, — уравнением (П.3.14). В теории оболочек, как уже говорилось, приближенному равенству (П.З.Г6) отвечают уравнения теории напряженных состояний с большой изменяемостью, а приближенному равенству (П.3.14) — уравнения безмоментной теории. Отсюда следует, что в (П. 16.1) под Тб. изм надо понимать напряженные состояния с весьма большой изменяемостью ( 24.13), а в (П.16.2) под Тосн — основные напряженные состояния ( 7.1). Очевидно также, что Ткр представляют собой простые краевые эффекты (напомним в связи с этим, что V по предположению ( П. 14) является неасимптотическим краем оболочки).  [c.501]

Наибольшее распространение в теории оболочек получил метод расчленения решения задачи на основное и простой краевой эффект [38, 139]. В качестве основного, медленно меняющегося состояния обычно используют решение уравнений без-моментной теории оболочек. О недостатках безмоментного решения в задачах многослойных эластомерных конструкций сказано выше. Сделаем некоторые замечания по поводу краевого эффекта в армирующем слое. На краях слоя обычно задаются статические условия, причем для Перерезывающего усилия и изгибающего момента эти условия являются однородными Qln = Л/г = 0. Если основное решение является без-моментным, то функции 1,, и М определяются только краевым эффектом. А тогда из условий свободного края следует, что простой краевой эффект не реализуется. В теории оболочек понятие безмоментного решения включает решение уравнений равновесия (5.5) и уравнений чистого изгиба 1 = ег = о = 0. В случае симметричной и кососимметричной деформации оболочки вращения чисто изгибиая деформация отсутствует, она сводится к смещениям как жесткого целого.  [c.137]


Среди таких моделей наиболее полно разработана модель прямой линии (модель С.П. Тимошенко), составившая основу многих теоретических и прикладных исследований в области механики слоистых оболочек и широко используемая в расчетной практике. Однако область пригодности ее уравнений ограничена (см. параграф 3.10), поэтому корректный расчет многих практически важных классов многослойных оболочек (с сушественным различием жесткостных характеристик слоев, сильной анизотропией деформативных свойств и т.д.) требует отказа от нее и обрашения к моделям более высоких порядков, имеющих более широкие области применимости. Важно подчеркнуть, что при отказе от классической модели или модели С.П. Тимошенко и переходе к той или иной корректной математической модели высокого порядка одновременно приходится отказываться и от традиционных процедур численного интегрирования краевых задач классической теории оболочек. Дело в том, что такой переход сопровождается не только формальным повышением порядка разрешающей системы дифференциальных уравнений, но и качественным изменением структуры ее решений, появлением новых быстропеременных решений, описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвиговых деформаций и обжатия нормали (подробнее этот вопрос рассматривается в параграфе 3.7). На этом классе задач оказывается практически непригодным для использования, например, метод дискретной ортогонализации С.К. Годунова [97], известный [118, 162 и др.] своей эффективностью на классе краевых задач классической теории и теории типа  [c.11]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Согласно этому методу асимптотическое решение для форм свободных колебаний выражается в виде суммы внутреннего решения и поправочных решений, которые называют динамическими краевыми аффектами. Для каждой границы тела строят решения, удовлетворяющие дифференциальным уравнениям и y -fiosHRM на соответствующей границе. Число таких выражений равно числу границ. Затем полученные решения склеивают. Эта процедура аналогична склеиванию моментных и безмоментных решений в теории оболочек или склеиванию вязких и невязких решений в гидродинамике. Вообще говоря, это склеивание может быть выполнено только приближенно. Чем быстрее затухают краевые эффекты, тем меньше ошибка асимптотического решения. Процедура склеивания позволяет получить систему трансцендентных уравнений для параметров, определяющих как внутреннее решение, так и краевые эффекты. Затем может быть получено асимптотическое выражение для собственных частот. Что касается асимптотического выражения для свободных форм, то оно может быть построено для всей области, исключая окрестности углов и ррбер. Это типично и для других методов, использующих идею краевого эффекта.  [c.406]

Приближенное решение моментной теории оболочек вращения предполагает расчленение напряжерно-деформированного состояния на безмоментное и краевой эффект. Краевому эффекту соответствует аналитическое решение моментной теории, справедливое в сравнительно узкой зоне оболочки. Оно строится на основе упрощения уравнений моментной теории в предположении, что угол oiq между осью вращения и краем оболочки близок л/2, длина краевой зоны невелика и в ее пределах радиусы кривизны Ri н R2 толщина оболочки не меняются, производные от функции перемещений w углов поворота 0j, сил Т2, 01, моментов Mi значительно больше  [c.153]

Но формулы (6 30) и (6.31) соответствуют решению задачи по безмо-ментной теории. Следовательно, и в теории пологой сферической оболочки напряженное состояние разделяют на безмоментное и смешанное. Только в этомХслучае смешанное напряженное состояние уже нельзя определять по теории краевого эффекта — его определяют решением однородного уравнения  [c.152]

Условимся считать, что срединная поверхность оболочки отнесена к некоторой ортогональной системе криволинейных координат, в которой рассматриваемая линия искажения у проходит вдоль одной из линий = = onst. Предполагается, что для конкретно указанной линии искажения такую систему можно построить, но она может быть сопряженной только в том случае, когда у совпадает с линией кривизны. Поэтому при выводе теории простого краевого эффекта мы будем считать, что оболочка отнесена к общей ортогональной системе координат, и исходить из системы уравнений, выведенной в 6.44.  [c.113]

Рассмотрим подъемистую оболочку с неособой срединной поверхностью ( 9.13) и неасимптотическими краями. Ее приближенный расчет, вообще говоря, можно выполнить методом расчленения ( 9.13) (исключение представляет случай, когда основное напряженное состояние имеет слишком большую изменяемость к нему мы еще вернемся). Эго равносильно принятию предположения 1, так как и в теории основного напряженного состояния 7.1), и в приближенной теории простого краевого эффекта ( 8.9) в первых двух уравнениях равновесия перерезывающие усилия Ni, N отбрасываются. В случае, когда оболочка вырождается в пластинку, предположение 1 превращается в тривиальное утверждение, так как коэффициенты при Ni, N, в первых двух уравнениях равновесия при этом обращаются в нуль. Но пологая оболочка занимает промежуточное положение между подъемистой оболочкой и пластинкой, поэтому естественно ожидать, что предположение 1, имеющее силу для крайних случаев, останется правильным и для промежуточного случая.  [c.141]

Итак, если для искомого напряженно-деформированного состояния в целом 1/2, то уточнения, даваемые уравнениями состояния итерационной теории, т. е. формулами (25.5.5), становятся бесполезными, более того, в этом случае предельно достижимую точность можно получить, исходя из еще более простых уравнений, т. е. из уравнений теории напряженных состояний с большой изменяемостью ( 10.24). Вместе с тем, если вдали от краев выполняется неравенство t < М2 и если условия закрепления краев оболочки таковы, что безмоментная теория безусловно применима к данной задаче, то итерационная теория позволяет существенно точнее строить основные напряженные состояния. Точность построения простого краевого эффекта, а следовательно, вообш говоря, и точность построения напряженно-деформированного состояния вблизи краев оболочки останется при этом такой же, как в теории Лява. Точность определения напряженно-деформированного состояния не повысится и вдали от краев, если имеет место условная применимость безмоментной теории.  [c.417]


Как известно, асимптотический метод в теории ребристых оболочек эффективен, если показатель изменяемости напряженного состояния вдоль ребра меньше показателя изменяемости в поперечном направлении. Это свойство, позв оля- ющее перейти к обыкновенным дифференциальным уравнениям типа краевого эффекта, обычно нарушается в окрестности концов ребер и в местах локального нагружения. Поэтому метод может дать правильные результаты, например при расчете оболочек вращения со шпангоутами, и сущеспвенную погрешность у концов продольных ребер, подкрепляющих оболочку. В последнем случае затруднено также выполнение граничных условий иа торцах оболочки.  [c.324]

Необходимо, далее, указать на работы, направленные на упрощение уравнений теории оболочек применительно к тому или иному кругу задач (например, расчет краевого эффекта, разработка и обоснование уравнений безмоментной и полубезмомент-ной теорий, а также теории пологих оболочек). В это направление развития теории оболочек особенно большой вклад внесли советские ученые, такие как X. М. Муштари [113, 114], С. Н. Файнберг [195], В. 3. Власов [15, 17], Ю. Н. Работнов [153, 154], А. Л. Гольденвейзер [39], а также авторы данной книги [127, 211, 213].  [c.9]

Напомним (см., налример, [15]), что в линейной теории при рассмотрении тонкой оболочки как трехмерного упругого тела напряженное состояние складывается из внутреннего напряженного состояния и пограничного слоя. Последний локализуется в окрестности края оболочки на расстоянии порядка ее толщины Л и не описывается двухмерными уравнениями. Показатель изменяемости пограничного слоя t = 1. Внутреннее состояние с погрешностью, неограниченно убывающей вместе с толпщной оболочки, может быть описано двухмерными уравнениями теории оболочек. Во многих случаях (в частности, для рассматриваемой задачи о растяжении полусферы внутренним давлением) внутреннее состояние складывается из безмоментного состояния с изменяемостью = О и простого краевого эффекта с изменяемостью t = 1/2, локализующегося в окрестности края s = S2 оболочки и приближенно описываемого уравнением  [c.366]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

Метод исследования состоит в том, что для каждого узла записываются уравнения равновесия и условия совместности и решаются относительно неизвестных, введенных таким обт разом, чтобы через них можно было определить все усилия, моменты, напряжения, перемещения и повороты. Для каждой части конструкции общее решение задается в виде суммы ре-шения по безмоментной теории и решения от краевого эффекта. Выражения решений от краевого эффекта для цилиндри ческой оболочки взяты из работы Хетеньи [8], а для сферической оболочки — из работы Лекки [9]. Ни одно из решений  [c.60]

Относительно мало результатов имеется по концентрации напряжений около больпшх отверстий (р 1). Это можно объяснить тем, что при р > 1 расчет оболочки сводится к типичной однородной задаче теории оболочек в двухсвязной области, где наличие отверстия в оболочке уже не является определяющим. Среди задач такого рода простейшими являются задачи с круговым отверстием в оболочке положительной гауссовой кривизны, труднейшими же, по-видимому,— с отверстием, контур которого в отдельных точках касается асимптотических линий (в случае оболочек отрицательной или нулевой гауссовой кривизны). В этих точках простой краевой эффект вырождается, в чем легко убедиться, рассматривая, например, приближенное уравнение для определения простого краевого эффекта (при около кругового отверстия  [c.244]

В. В, Понятовского (1962). Анализ выведенных систем показывает, что с увеличением порядка системы дифференциальных уравнений выше восьмого в решениях появляются краевые эффекты типа Сен-Венана более того, увеличение порядка системы уравнений (физически это соответствует увеличению числа степеней свободы) порождает только новые интегралы с большим показателем изменяемости — краевые эффекты типа Сен-Венана. Итак, если нужно выделить краевые эффекты Сен-Венана, соответствуюш,ие краевому кручению и краевой плоской деформации в первом приближении, то система дифференциальных уравнений теории оболочек должна быть 14-го порядка. Однако пока не имеется опубликованных результатов по анализу таких расширенных систем уравнений теории оболочек.  [c.263]


Смотреть страницы где упоминается термин Уравнения краевого эффекта в теории оболочек : [c.219]    [c.4]    [c.154]    [c.264]    [c.269]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Уравнения краевого эффекта в теории оболочек



ПОИСК



I краевые

Асимптотический анализ уравнений теории оболочек Основные типы наприжеииого состояния. Краевой эффект

Оболочки Теория — См. Теория оболочек

Оболочки Уравнения—см. Теория оболочек

Оболочки Эффект краевой

Оболочки Эффект краевой — Уравнения

Оболочки уравнения

Теории Уравнения

Теория оболочек

Эффект краевой



© 2025 Mash-xxl.info Реклама на сайте