Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система геометрическая устойчивая

Для интегрирования системы геометрически нелинейных дифференциальных уравнений устойчивости используют метод возмущений [105], метод разложения в степенные ряды [106] и [107], метод Бубнова — Галеркина и энергетические методы.  [c.262]

Два тяжелых однородных шара находятся в равновесии внутри сферической оболочки в соприкосновении (без трения) между собой и с оболочкой. Показать, что равновесие системы является устойчивым. (В этом можно убедиться, заметив, что в положении равновесия центр тяжести двух шаров совпадает с самой нижней точкой сферической поверхности, представляющей собой геометрическое место всех его возможных положений.)  [c.147]


В данном случае усталостное распространение трещины геометрически устойчиво (трещина будет распространяться вдоль прямой линии р = 0). Поэтому система уравнений (IV.54) и (IV.58) для данного случая принимает вид  [c.99]

Как показывают экспериментальные исследования, усталостное распространение внешней трещины при круговом изгибе цилиндрического образца с фиксированной стрелой прогиба будет геометрически устойчиво (кинематическая система контуров усталостной трещины будет концентрической). На основании этого и результатов проведенных исследований дифференциальное уравнение (IV.59) для описания кинетики распространения усталостной трещины имеет вид  [c.102]

При круговом изгибе цилиндрического образца с внешней кольцевой трещиной, когда постоянной остается стрела прогиба, развитие усталостной трещины будет геометрически устойчивым. Кинематическая система ее контуров будет концентрической. Это нагружение создает такую устойчивую форму трещины, что малые случайные отклонения в нагрузке, геометрии и местные не-  [c.200]

Разделение режимов может производиться в функции переменных состояния системы.-Геометрически это означает разделение фазового пространства переменных системы на ряд связных областей (подпространств, каждая из которых соответствует своему режиму работы объекта. Например, область вблизи начала координат (то есть окрестность невозмущенного движения) может быть сопоставлена с установившимся режимом с малыми по модулю возмущениями со стороны внешни.ч сил. В этой области показателем качества может быть выбрана так называемая техническая устойчивость движения [12] в виде  [c.8]

Устойчивость геометрически нелинейной системы  [c.362]

Таким образом, в условиях ограниченной ползучести материала и геометрической нелинейности удается установить предел длительной устойчивости <7 кр и критическую деформацию 0кр (или Акр). Так как ползучесть ограниченная, при q<.q Kp и t x> система переходит из положения М в положение М (рис. 16.14), где деформация 0< 0кр. Система устойчива на бесконечном интервале времени. Если q>q Kp, несмотря на затухание скорости ползучести, характерное смещение фермы за конечное время достигает критического значения 0кр (или Акр) и создаются условия для потери устойчивости. Тогда при ( кр 9кр в условиях ограниченной ползучести является правомерной постановка вопроса об определении критического времени кр, необходимого для достижения критической деформации.  [c.364]


Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

Геометрический смысл этого неравенства состоит в том, что оно требует, чтобы в устойчивых состояниях зависимость мольного (или удельного) потенциала системы от концентрации изображалась кривой, обращенной выпуклостью вниз. В частности, если система представляет собой идеальный бинарный раствор, то для него в соответствии с (9-35) мольный потенциал системы запишется следующим образом  [c.181]

Отметим, однако, что не меньший интерес представляет развитие теории стохастической устойчивости вязкоупругих систем и, в частности, использование вероятностных методов при определении функционала критического времени. Это связано, в частности, с тем, что большая часть реальных факторов, влияюш,их на поведение системы, имеет случайный характер. Кроме того, актуальными представляются различные проблемы динамической устойчивости, проблемы влияния скорости нагружения на процесс потери устойчивости, задачи потери устойчивости при ударных нагружениях, выделение основных параметров вязкоупругих систем, влияюш,их на процесс потери устойчивости, задачи тепловой устойчивости и др. Представляет также интерес исследование вопросов устойчивости вязкоупругих систем в геометрически- и физи-чески-нелинейной постановке.  [c.231]

Увеличение веса машины за счет присоединения дополнительной плиты к основанию приведет к увеличению инерционного сопротивления системы, уменьшит амплитуду ее колебания при той же вынуждающей частоте. Одновременно с этим тяжелая плита, жестко связанная с машиной, приблизит геометрический центр тяжести системы к плоскости несущей конструкции, что, создавая более устойчивое равновесие, также будет способствовать уменьшению амплитуд вынужденных колебаний. Однако чрезмерное увеличение веса механизма повлечет к изменению жесткости прокладок, что, нарушая их оптимальные упругие свойства, может  [c.107]


Главные особенности явления разрушения были объяснены в работе Цая и By [46] путем детального исследования таких вопросов, как определение технических параметров прочности, условия устойчивости, влияние преобразований системы координат, приложения к изучению трехмерных армированных композитов и вырожденных случаев симметрии материала. Дополнительную информацию из формулировки (5а) критерия можно получить путем анализа тех требований к поверхности прочности, которые вытекают из геометрических соображений. В соответствии с концепциями феноменологического описания ниже будут обоснованы общие математические модели, обеспечивающие достаточную гибкость и возможность упрощений на основании симметрии материала и имеющихся экспериментальных данных. Мы начнем с рассмотрения тех преимуществ, которые имеет формулировка критерия в виде (5а) по сравнению с другими формулировками, использующими уравнения вида (1) или  [c.412]

В тех случаях, когда имеет место влияние геометрических размеров системы, скорости течения второго компонента, вязкости и т. п., критерий устойчивости к является функцией системы соответствующих определяющих критериев. Так, устойчивость капли в потоке газа зависит от ее размера, т. е.  [c.210]

В отличие от устойчивого резонатора прозрачность неустойчивого резонатора определяется не пропусканием излучения выходным зеркалом, а геометрическими размерами системы и составляет отношение площади кольца выходящего излучения к площади сечения, занятого излучением, т. е.  [c.47]

Существует также теорема [3], которую часто называют принципом минимума полной потенциальной энергии или теоремой Лагранжа в состоянии равновесия консервативной системы ее полная потенциальная энергия принимает стационарное значение, причем в устойчивом состоянии равновесия это стационарное значение — минимум. Подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы — как линейные, так и нелинейные. Нелинейность консервативной системы может быть обусловлена двумя причинами геометрическими и физическими. Геометрические нелинейности обычно связаны с большими перемещениями гибких тонкостенных систем типа стержней, мембран или оболочек. Физическая нелинейность — это нелинейность зависимости между напряжениями и деформациями в упругом твердом теле.  [c.77]

При решении задач устойчивости и колебаний имеем однородную систему и Я = 0. Для краевых задач механики, описывающихся дифференциальными уравнениями вида (3.74), разработаны эффективные алгоритмы численных решений [8, 20, 33]. Рассмотрим способ решения, основанный на делении одномерной системы по координате S на отдельные элементы и стыковки отдельных элементов по геометрическим и силовым факторам с использованием матриц жесткости.  [c.93]

На вопросах устойчивости равновесия подробнее остановимся в следующем параграфе, а сейчас только подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы, как линейные, так и нелинейные. Нелинейности в консервативных системах могут быть геометрические и физические. Геометрические нелинейности обычно связаны с большими перемещениями тонкостенных систем типа стержней, мембран или оболочек. Физические нелинейности проявляются в тех случаях, когда материал не подчиняется закону Гука, а обладает более сложными упругими свойствами.  [c.24]

При моделировании тонкостенных балок возможны конструктивные упрощения за счет использования приближенного (аффинного) подобия модели и натуры. Если исключить из рассмотрения вопросы местной устойчивости элементов конструкции, то можно подбирать силовые пояса модели тонкостенной балки не из условия геометрического подобия, а путем моделирования продольных элементов по их площадям, сохраняя геометрический масштаб для строительных высот и других габаритных размеров системы.  [c.260]

Если при моделировании стержневой системы ставится цель исследования общей прочности и устойчивости, то при проектировании модели можно отказаться от полного геометрического подобия, обеспечивая лишь подобие длин стержней, площадей поперечных сечений и соответствующих моментов инерции. Такой подход значительно упрощает конструкцию модели и применяется, например, при моделировании перемещений элементов судового корпуса на металлических моделях из электродной проволоки, описанных выше ( 11.2, п.2).  [c.262]

Таким образом, деформирование и разрушение нагруженного тела, сопровождаемые возникновением и развитием поврежденных зов, областей закритической деформации, поведение которых находит отражение на диаграмме деформирования в виде ниспадающей ветви, а также зон разрушенного материала, можно исследовать как единый процесс, описываемый при квазистатическом нагружении краевой задачей, состоящей из замкнутой системы уравнений уравнений равновесия (9.43), геометрических соотношений (9.42), определяющих соотношений в форме (9.19) или (9.20), условий закритической деформации (6.37) и устойчивости этого процесса (9.51), а также граничных условий (9.44) и (9.45).  [c.214]

Подставим в систему уравнений (3.2) выражения для усилий и моментов из (2.111), в которых учтены принятые ранее геометрические и кинематические соотношения. После очевидных преобразований система уравнений статической устойчивости рассматриваемой оболочки примет следующий вид  [c.121]

Рассмотрим несимметричную форму потери устойчивости — в гл. 7 будет показано, что при указанных ниже геометрических и механических параметрах реализуется именно эта форма (см. также [133, 154, 155]). Составив линейную комбинацию базисных вектор-функций подпространства с коэффициентами Ср. .., и подчинив ее краевым условиям (4.5.6), приходим к алгебраической системе четырех линейных однородных уравнений  [c.126]


Сш1ы и моменты, входящие без нижних индексов О , связаны с соответствующими обобщенными деформациями и с перемещениями физическими и геометрическими соотношениями (9.14.2) и (9.14.3) и соответствуют малому дополнительному возмущению, наложенному на докритическое состояние, которое определяется силами 7 ю, Тго Поскольку эти силы учитывают условия нахружения оболочки, система уравнений устойчивости, описывающая реакцию оболочки на дополнительное возмущение, и соответствующая система граничных условий являются однородными. Согласно статическому критерию устойчивости Эйлера критической будет первая (по мере того, как увеличивается внешняя нагрузка) комбинация докритических сил Tjo, /20, Sq, при которой система уравнений устойчивости имеет отличное от товдественно нулевого (нулевое дополнительное состояние соответствует исходной докритической форме равновесия) решение, удовлетворяющее заданным граничным условиям.  [c.229]

Замечания. 1°. Геометрически устойчивость множества (1.2.4) означает, что внутри любого г-цилиндра Цу < е найдется цилиндр ЦуоЦ = 6, такой, что любое решение г, о,Хо) системы (1.2.1), начавшееся при / = /о внутри цилиндра, будет в дальнейшем при всех /> оставаться внутри г -цилиндра (рис. 1.2.3).  [c.49]

Далее оказывается, что усредненная система имеет устойчивое положение равновесия, соответствующее движению всех планет в одной плоскости а одну сторону по круговым орбитам. Движение планет, соответствующее малым колебаниям в линеаризованной около этого равновесия усредненной системе, называется лагранжевым движением. Оно имеет простую геометрическую интерпретацию. Вектор, направленный из фокуса в перигелий планеты и имеющий длину, пропорциональную ее эксцентриситету (вектор Лапласа), в проекции на основную плоскость системы координат является суммой п—1 равномерно вращаюшлхся векторов. Набор угловых скоростей этих векторов одинаков для всех планет. Вектор, направленный по линии пересечения плоскости орбиты планеты с основной плоскостью (линии узлов) и пропорциональный по длине наклонению планеты, является суммой п—2 равномерно вращающихся векторов". Если в некоторый момент времени эксцентриситеты и наклонения достаточно малы, то в усредненной системе они останутся малыми и во все время движения. В частности, оказываются невозможными столкновения планет и уходы на бесконечность. Это утверждение называется теоремой Лагранжа — Лапласа об устойчивости Солнечной системы. С момента доказательства теоремы (1784 г.) центральная математическая задача небесной механики состояла в том, чтобы перенести этот вывод об устойчивости с усредненной системы на точную. На этом пути возникли многие разделы теории динамических систем, в том числе теория возмущений и эргодическая теория. Сейчас решение рассматриваемой задачи значительно продвинуто. Оказывается, при достаточно малых массах планет большая доля области фазового пространства, соответствующей не-зозмущенном движению в одну сторону по кеплеровским эллипсам малых эксцентриситетов и наклонений, заполнена условно-периодическими движениями, близкими к лагранжевым (см. 3). Таким образом, устойчивость имеет место для большинства начальных условий. При начальных условиях из исключительного множества эволюция больших полуосей если и происходит, то очень медленно — ее средняя скорость экспо-  [c.186]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

Метод вспомогательных оторЗажений. Опнсанные выше критерии существования неподвижной точки и особенно критерий, основанный на принципе сжимающих отображений, в тех случаях, когда его удается применить, дает значительные, а ииогд ) и исчерпывающие сведения о поведении изучаемой системы. В качестве примера можно привести произвольную механическую систему с взаимными и собственными комбинированными трениями без падающих участков характеристик трения. К такой системе возможно применение принципа сжимающих отображений, позволяющее установить глобальную устойчивость многообразия состояний равновесия или периодических движений при воздействии на такую систему внешней периодической силы. Применение принципа сжимающих отображений позволяет установить существование и единственность вынужденных колебаний в системе с т 1к называемым конструкционным демпфированием. Соответствующие примеры могут быть продолжены, но все же они не очень многочисленны, поскольку далеко не всегда имеется сжимаемость. В настоящем разделе излагается метод вспомогательных отображений, позволяющий расширить применение критерия о существовании и единственности неподвижной точки на несжимающие отображения. Ради геометрической наглядности это изложение, как и относящиеся к нему примеры, будет ограничено двумерными точечными отображениями.  [c.301]

Предположим, что система состоит из одной точки. Приведенным пример показывает, что гармонический колебаниям точки соответствует движение изображающей точки в фазовой плоскости по эллипсу. Этот результат является частным случаем геометрической интерпретации, положенной в основу второго способа доказательства теоремы Лагранжа—Дирихле об устойчивости равновесия ( 87).  [c.278]

Но 1 — Г = / таким образом, при р<Е /Е стержень асимптотически устойчив в том смысле, что прогиб его под действием продольной силы и произвольной поперечной нагрузки стремится к конечному пределу. Этот предел неограниченно возрастает, когда р стремится к величине отношения Е /Е при р Е /Е предельная теорема перестает быть справедливой. Общий вывод из рассмотренного примера следующий. Система мгновенно неустойчива, когда нагрузка превосходит эйле,рову, вычисленную по мгновенному модулю. Система асимптотически неустойчива, если нагрузка превышает эйлерову нагрузку, соответствующую длительному модулю. При меньших нагрузках система устойчива. Этот результат относится не только к случаю сжатого стержня, но п к любой наследственно-упругой системе, устойчивость которой может быть исследована на основе геометрически линейной постановки задачи типа Эйлера.  [c.603]

По мере того как нагрузка возрастает до предельной, принципы нормальности и выпуклости остаются в силе. Предельная нагрузка, которую может выдержать конструкция в целом, снижается, когда составляющие ее элементы либо уменьшают свой вклад в сопротивление из-за геометрических изменений (рост пустот, выпучивание и т. д.), либо полностью перестают воспринимать нагрузку вследствие разру-щения. В некоторых случаях (иногда очень быстро) наступает глобальная неустойчивость системы и происходит разделение ее на составные части или разрушение при неизменной нагрузке. Если неустойчивость наступает в элементе статически неопределимой системы, то в противоположность этим случаям такой элемент выдерживает максимально возможную нагрузку до тех пор, пока ее не начнут воспринимать соседние элементы. До достижения максимальной нагрузки конструкция в целом остается устойчивой, предельная поверхность в пространстве напряжений остается выпуклой и вектор приращения упругого перемещения нормален к этой поверхности по мере того, как она изменяется в процессе ослабления или разрушения компонент.  [c.25]


Что касается геометрических параметров тупикового ответвления, то они почти не влияют на устойчивость системы важен только объем масла, вмещаюи1,егося в ответвление. Напомним, что мы рассматривали ответвление, объем" которого составляет /в от объема" основной трубы.  [c.239]

Советские ученые значительно обогатили науку в области исследования устойчивости различных нелинейных систем автоматического регулирования. Здесь мож.но назвать труды акад. А. А. Андронова, Б. В. Булгакова, Н. Н. Баутина, А. Г. Майера, А. И. Лурье и многих других. Ряд задач был решен представителями этой школы методом геометрического изображения поведения системы регулирования в виде траектории движения, так называемой изображаюш,ей точки на фазовой плоскости.  [c.24]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Задачи устойчивости неупругих систем возникают в связи с расчетами элементов конструкций и машин, материал которых работает за пределом упругости. Таковы упругогшастичес-кие, вязкоупругие, вязкопластические и упруговязкопластические системы. Существенное отличие этих систем от упругих (в том числе геометрически нелинейных) систем состоит в том, что их поведение зависит от предыстории нагружения и деформирования. Дополнительные усложнения вносят эффекты разгрузки после деформирования в упругопластической стадии. С точки зрения аналитической механики упругопластические, вязкопласгические и упруговязкопластические системы - это нелинейные системы с неголономными односторонними связями, причем естЕи исключить модельные задачи, то это -системы с континуальным числом степеней свободы.  [c.495]

Анализ вьпгучивания и устойчивости идеальных упруго пластических систем не является общим потому, что реальные алементы конструкций имеют различные несовершенства. Неустойчивость реальных конструкций и их элементов наступает в предельных точках точно так же, как и для идеальных систем с устойчивым пос-лебифуркационным выпучиванием. В связи с этим все начальные несовершенства геометрической формы и внецентренного приложения нагрузок принимают за возмущающие факторы с наложенными на них ограничениями. Процесс выпучивания системы с начальными несовершенствами рассматривают как возмущенный процесс, с помощью которого анализируют устойчивость идеализированной конструкции. На рис. 7.5.2 приведены два случая сжатия стержня эксцешрично приложенной силой Р. Если эксцентриситет 5 мал и не превосходит некоторого предельного значения 6 , то стержень теряет устойчивость в предельной точке. Если 5>5., то задачи устойчивости не возникает.  [c.496]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]


Смотреть страницы где упоминается термин Система геометрическая устойчивая : [c.314]    [c.174]    [c.10]    [c.10]    [c.53]    [c.281]    [c.240]    [c.112]    [c.178]    [c.12]    [c.76]   
Курс теории механизмов и машин (1975) -- [ c.341 ]



ПОИСК



Система Устойчивость

Система геометрическая

Система устойчивая

Устойчивость геометрически нелинейной системы



© 2025 Mash-xxl.info Реклама на сайте