Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость геометрически нелинейной системы

Устойчивость геометрически нелинейной системы  [c.362]

Таким образом, в условиях ограниченной ползучести материала и геометрической нелинейности удается установить предел длительной устойчивости <7 кр и критическую деформацию 0кр (или Акр). Так как ползучесть ограниченная, при q<.q Kp и t x> система переходит из положения М в положение М (рис. 16.14), где деформация 0< 0кр. Система устойчива на бесконечном интервале времени. Если q>q Kp, несмотря на затухание скорости ползучести, характерное смещение фермы за конечное время достигает критического значения 0кр (или Акр) и создаются условия для потери устойчивости. Тогда при ( кр 9кр в условиях ограниченной ползучести является правомерной постановка вопроса об определении критического времени кр, необходимого для достижения критической деформации.  [c.364]


Для интегрирования системы геометрически нелинейных дифференциальных уравнений устойчивости используют метод возмущений [105], метод разложения в степенные ряды [106] и [107], метод Бубнова — Галеркина и энергетические методы.  [c.262]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

Существует также теорема [3], которую часто называют принципом минимума полной потенциальной энергии или теоремой Лагранжа в состоянии равновесия консервативной системы ее полная потенциальная энергия принимает стационарное значение, причем в устойчивом состоянии равновесия это стационарное значение — минимум. Подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы — как линейные, так и нелинейные. Нелинейность консервативной системы может быть обусловлена двумя причинами геометрическими и физическими. Геометрические нелинейности обычно связаны с большими перемещениями гибких тонкостенных систем типа стержней, мембран или оболочек. Физическая нелинейность — это нелинейность зависимости между напряжениями и деформациями в упругом твердом теле.  [c.77]


На вопросах устойчивости равновесия подробнее остановимся в следующем параграфе, а сейчас только подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы, как линейные, так и нелинейные. Нелинейности в консервативных системах могут быть геометрические и физические. Геометрические нелинейности обычно связаны с большими перемещениями тонкостенных систем типа стержней, мембран или оболочек. Физические нелинейности проявляются в тех случаях, когда материал не подчиняется закону Гука, а обладает более сложными упругими свойствами.  [c.24]

При решении вопроса об устойчивости системы в условиях ползучести выделяется некоторый класс возмущенных решений, на основе исследования поведения которых судят об интервале устойчивости невозмущенного движения. В некото-шх работах вместо этого вопроса рассматривается другой 126, 129]. Возмущенное решение само рассматривается как основное движение и исследуется поведение некоторых возмущений уже по отношению к этому движению. Но следует иметь в виду, что из-за существенной физической, а в ряде случаев и геометрической нелинейности рассматриваемых задач и ограниченных возможностей линеаризаций такое исследование по отношению к основному исходному движению должно при правильной постановке вопроса сводиться к исследованию возмущенных решений, обусловленных более широким классом возмущений.  [c.292]

Отметим, однако, что не меньший интерес представляет развитие теории стохастической устойчивости вязкоупругих систем и, в частности, использование вероятностных методов при определении функционала критического времени. Это связано, в частности, с тем, что большая часть реальных факторов, влияюш,их на поведение системы, имеет случайный характер. Кроме того, актуальными представляются различные проблемы динамической устойчивости, проблемы влияния скорости нагружения на процесс потери устойчивости, задачи потери устойчивости при ударных нагружениях, выделение основных параметров вязкоупругих систем, влияюш,их на процесс потери устойчивости, задачи тепловой устойчивости и др. Представляет также интерес исследование вопросов устойчивости вязкоупругих систем в геометрически- и физи-чески-нелинейной постановке.  [c.231]

Для исследования динамических свойств нелинейных автоматических систем в настоящее время существует много методов, позволяющих исследовать свободные и вынужденные колебания нелинейных автоматических систем. Ведущее значение имеют методы, опирающиеся на фундаментальные теоремы А. М. Ляпунова об устойчивости движения. Кроме них, широко применяются топологические методы, связанные с геометрическим построением структуры фазовых пространств, методы качественной теории дис еренциальных уравнений, припасовывания, разностные, опирающиеся на понятие передаточной функции и частотной характеристики системы, а также математического моделирования.  [c.4]

Недавние открытия указывают на то, что даже в самых внешне хаотичных процессах всегда существует четкая геометрическая структура есть порядок, выдающий себя за случайность. Независимо от того, каково хаотическое явление, его поведение подчиняется тем же заново открытым законам. Найдено, что хаос - вездесущее, устойчивое и реально существующее представление реальности. Чистые решения детерминистских вероятностей в классических науках, поборником которых был Лаплас, и долгая вереница ученых столь долго определяли, как мы смотрим на природу, что только некоторые до сих пор помнят, что упорядоченные, линейные системы - это отклонения. Только немногие до сих пор понимают, что суть природы нелинейна.  [c.1143]

Советские ученые значительно обогатили науку в области исследования устойчивости различных нелинейных систем автоматического регулирования. Здесь мож.но назвать труды акад. А. А. Андронова, Б. В. Булгакова, Н. Н. Баутина, А. Г. Майера, А. И. Лурье и многих других. Ряд задач был решен представителями этой школы методом геометрического изображения поведения системы регулирования в виде траектории движения, так называемой изображаюш,ей точки на фазовой плоскости.  [c.24]


Задачи устойчивости неупругих систем возникают в связи с расчетами элементов конструкций и машин, материал которых работает за пределом упругости. Таковы упругогшастичес-кие, вязкоупругие, вязкопластические и упруговязкопластические системы. Существенное отличие этих систем от упругих (в том числе геометрически нелинейных) систем состоит в том, что их поведение зависит от предыстории нагружения и деформирования. Дополнительные усложнения вносят эффекты разгрузки после деформирования в упругопластической стадии. С точки зрения аналитической механики упругопластические, вязкопласгические и упруговязкопластические системы - это нелинейные системы с неголономными односторонними связями, причем естЕи исключить модельные задачи, то это -системы с континуальным числом степеней свободы.  [c.495]

Задача устойчивости пологой сферической оболочки с круговым отверстием в геометрически нелинейной постановке при действии равномерно распределенного давления рассматривалась А. А. Киричуком [90]. Исходные соотношения сводились автором к системе обыкновенных дифференциальных уравнений путем разложения разрешающих функций в ру ды Фурье. Нелинейные уравнения решались методом продолжения решения по параметру. В работе изучено влияние размеров отверстия на величину критических нагрузок оболочки при осесимметричных и неосесимметричных формах потери устойчивости.  [c.304]

Относительно простые уравнения, учитывающие геометрическую нелинейность задачи, получаются, если ввести допущение о том, что в процессе ползучести оболочки при возмущенном движении, обусловленном некоторыми отклонениями от идеальной формы, напряжения и деформации в ней мало отличаются от напряжений и деформаций основного безмо-ментйого состояния. Введение этого допущения позволяет привести задачу об определении прогибов и напряжений пологой оболочки в условиях ползучести к системе из двух нелинейных интегродифференциальных уравнений относительно прогиба и функции напряжений, зависящих от координат на срединной поверхности и времени [87], Эти уравнения отличаются от уравнений, которые были получены ранее [83, 77] при исследовании условных критериев устойчивости, только слагаемыми, учитывающими геометрическую нелинейность. Сведение задачи к системе из двух уравнений позволяет использовать для решения задач ползучести оболочек эффективный прием, аналогичный тому приему, который был предложен Карманом и Тзяном при решении нелинейных задач для упругих оболочек. Прием состоит в разыскании функции прогибов в виде ft (О Щ (х, у), где Wi x, у) — задаваемые функции координат. Вид функции напряжений устанавливается с помощью уравнения совместности. Второе уравнение интегрируется по координатам приближенно в смысле Бубнова — Галеркина. Задача сводится к системе нелиь ей-ных интегральных уравнений относительно функций интегрирование которых при заданных начальных условиях  [c.273]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]

Рассмотрены вопросы упругой устойчивости иагруженпы.х параболической нагрузкой пологих оболочек на круглом плане, нри прогнба.х, превос.ходящих толщину, но существенно меньших прочих размеров систе,мы. Вариационным методом Ритца задача сведена к системе нелинейных алгебраических уравнений. Изучено влияние различных параметров (геометрического параметра хлопка, коэффициента Пуассона) и граничных условий на процесс потери устойчивости. Показано, что пологие сферические оболочки получают меньше деформации при нагрузках, распределенных по параболическому закону, по сравнению с оболочками, загруженными равномерно распределенны.м давление.ч. Табл, 2, ил. 3, список лит. 3 назв.  [c.329]

Анализ и распознавание изображений осуществляется с помощью телевизионно-вычислительной системы, важной частью которой является телевизионный датчик, преобразующий световое изображение наблюдаемого объекта в видеосигнал, содержащий информацию, необходимую для определения параметров объекта с заданной точностью. Из телевизионных датчиков интегрального и растрового типа рассмотрим последние, так как они позволяют компоновать системы искусственного зрения для решения достаточно сложных технологических задач, таких как выделение нужного объекта среди множества других независимо от их положения, размера, ориентации определение координат центра масс и угла поворота выделен ного объекта относительно заданного положения. Так как точность преобразования изображения объекта в видеосигнал в значительной степени определяет точность всей системы распознавания, то к телевизионному датчику как к входному элементу предъявляются следующие требования малые геометрические искажения, высокая линейность развертки, высокая стабильность размеров и центровок растра высокая линейность и устойчивость усилительного тракта работа в заданном диапазоне освещенностей. Только при соблюдении перечисленных требований от телевизионных датчиков могут быть получены многократно повторяемые идентичные и достоверные данные. Наиболее рациональным является не самостоятельная разработка телевизионных датчиков, а применение в качестве датчика серийной телекамеры на основе видикона, основные параметры которого лежат в следующих диапазонах разрешающая способность 150—500 линий минимальная освещенность 30—350 л к геометрические искажения растра 3 % нелинейные искажения растра 4 %. Стандартная телекамера на видиконе укомплектована объективами со следующими характеристиками фокусное расстояние З/—  [c.92]



Смотреть страницы где упоминается термин Устойчивость геометрически нелинейной системы : [c.178]    [c.117]    [c.23]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Устойчивость геометрически нелинейной системы



ПОИСК



Нелинейность геометрическая

Система Устойчивость

Система геометрическая

Система геометрическая устойчивая

Система устойчивая

Системы нелинейная



© 2025 Mash-xxl.info Реклама на сайте