Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоский прямой изгиб

ПЛОСКИЙ ПРЯМОЙ ИЗГИБ  [c.12]

Какие нагрузки вызывают плоский прямой изгиб стержня  [c.59]

Плоский прямой изгиб возникает при действии иа стержень системы внешних сил, перпендикулярных к его оси и лежащих в одной главной плоскости.  [c.59]

В общем случае плоского прямого изгиба в поперечных сечениях балки возникают два внутренних силовых фактора поперечная сила Оу и изгибающий момент  [c.60]

Анализируя это выражение, находим, что в отличие от плоского (прямого) изгиба при сложном изгибе нейтральная и силовая линии в общем случае (когда Jz =Jy) не будут взаимно перпендикулярны.  [c.355]


Плоскость расположения изогнутой оси называется плоскостью изгиба, а плоскость действия внешних сил называется силовой плоскостью. Если плоскость изгиба совпадает с силовой плоскостью, то такой вид деформации называется плоским прямым изгибом. Существуют и другие виды изгиба.  [c.192]

Ниже рассматривается плоский прямой изгиб стержней, поперечные сечения которых имеют по крайней мере одну плоскость (ось) симметрии, совпадающую с силовой плоскостью (рис. 12.1).  [c.192]

Рис. 12.4. Связь напряжений н внут< ренних силовых факторов при плоском прямом изгибе Рис. 12.4. Связь напряжений н внут< ренних <a href="/info/25733">силовых факторов</a> при плоском прямом изгибе
НОРМАЛЬНЫЕ И КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ ПРИ ПЛОСКОМ ПРЯМОМ ИЗГИБЕ  [c.202]

В настоящей главе рассматривается наиболее простой вид изгиба — плоский прямой изгиб.  [c.117]

Рассмотрим балку, находящуюся в условиях плоского прямого изгиба под действием произвольных поперечных нагрузок в главной плоскости Оху (рис. 7.31, а). Рассечем балку на расстоянии л от ее левого конца и рассмотрим равновесие левой части. Влияние правой части в этом случае нужно заменить действием изгибающего момента и поперечной силы Qy в проведенном сечении (рис. 7.31,6). Изгибающий момент Мг в этом случае не является постоянным по величине, как это имело место при чистом изгибе, а изменяется по длине балки. Так как изгибающий момент согласно (7.14) связан с нормальными напряжениями а = С , то нормальные напряжения в продольных волок-  [c.136]

В предыдущих главах были подробно рассмотрены простейшие виды деформирования стержней растяжение и сжатие, кручение, плоский прямой изгиб. Настоящая глава посвящена решению задач о сложном сопротивлении стержней, представляющим собой комбинации простейших видов деформирования. Примерами сложного сопротивления являются растяжение с изгибом, изгиб в двух плоскостях, изгиб с кручением и т. д.  [c.235]

До настоящего параграфа мы рассматривали плоский прямой изгиб балок, при котором все нагрузки лежали в одной плоскости, проходящей через одну из главных осей сечения. При таком изгибе деформация оси балки происходит в плоскости действия нагрузок.  [c.291]

Одним из видов сложного сопротивления является косой изгиб. При изучении плоского (прямого) изгиба мы предполагали, что все силы лежат в одной из главных плоскостей.  [c.183]


Задачу косого изгиба сводят к одновременному рассмотрению двух плоски (Прямых) изгибов, раскладывая изгибающий момент в сечении на два момента, действующие в главных гтл ос костях (проходят чере главные оси сечения).  [c.85]

Если плоскость действия изгибающего момента (силовая плоскость) проходит через одну из главных центральных осей поперечного сечения стержня, изгиб носит название простого или плоского (применяется также название прямой изгиб).  [c.132]

Тем ке менее, достаточно часто встречаются случаи нагружения бруса силами, которые лежат в разных силовых плоскостях. В таком случае брус будет испытывать пространственный изгиб, деформируясь одновременно в двух и более плоскостях. В отличие от плоского изгиба его упругая линия будет пространственной кривой, но в то же время брус будет деформироваться так, что в его каждом сечении силовая и нулевая линии будут перпендикулярны, как при обычном прямом изгибе. Примером пространственного нагружения могут служить валы зубчатых передач, испытывающие изгиб в двух плоскостях.  [c.308]

Плоский прямой ( поперечный ) изгиб возникает при действии на балку системы внешних сил, перпендикулярных к ее оси и лежащих в плоскости, проходящей через главную центральную ось сечения балки. Изогнутая ось балки в этом случае - плоская кривая, совпадающая с плоскостью действия внеш-ни сил.  [c.39]

Целесообразно ввести понятие и о плоском косом изгибе-, по-видимому, рис. 12.1, иллюстрирующий характер деформаций при прямом и косом изгибах, разумно дать на плакате. Учитывая, что в учебной литературе нередко прямой изгиб называют плоским, выскажем некоторые соображения по терминологии. Изгиб называют прям ы м, если направление прогиба совпадает с направлением нагрузки. Брус гнется прямо, туда, куда его изгибают внешние силы. При косом изгибе брус гнется не в направлении действия внешних сил. Такая терминология не только логична, но и соответствует духу языка противопоставление прямо и косо вполне оправдано. Противопоставлять же тер-  [c.119]

Настоятельно рекомендуем не ограничиваться рассмотрением потери устойчивости сжатого стержня, а привести еще несколько технически важных примеров. Скажем, показать потерю устойчивости при прямом изгибе, потерю устойчивости сжатого радиальными силами кольца или тонкой оболочки. Не все преподаватели хорошо рисуют на доске, поэтому следует заготовить специальные плакаты, на которых показана потеря устойчивости плоской формы изгиба и сжатого кольца. Затрата времени на эти дополнительные сведения очень невелика, а познавательный эффект значителен.  [c.190]

Плоский косой изгиб бруса возникает под действием нагрузок, плоскость действия которых (силовая плоскость) не совпадает ни с одной из главных плоскостей инерции (рис. 8-2). При этом виде изгиба упругая линия бруса — плоская кривая, н е л е ж а щ а я в силовой плоскости. Если поперечое сечение бруса таково, что любая его центральная ось является главной (некоторые примеры таких сечений представлены на рис. 8-3), то независимо от положения силовой плоскости изгиб будет прямым.  [c.180]

Как плоский, так и пространственный случаи косого изгиба можно рассматривать как сочетание двух прямых изгибов в главных плоскостях инерции бруса. Все внешние силы и моменты, действующие на  [c.181]

Прямой (простой, плоский) поперечный изгиб — частный случай плоского косого изгиба, при котором плоскость упругой линии параллельна силовой плоскости.  [c.128]

Сечения тт и пп, оставаясь плоскими, поворачиваются друг относительно друга вокруг своих нейтральных линий нейтральные линии сечений должны быть перпендикулярны силовой плоскости для того, чтобы плоскость упругой линии была ей параллельна, и, следовательно, при прямом изгибе силовая и нейтральная линии перпендикулярны нейтральный слой — цилиндрическая поверхность и все волокна после деформации — плоские кривые т т и п п — положения сечений тт и пп после деформации dQ — взаимный угол поворота поперечных сечений, расстояние между которыми до деформации х Л Л/—волокна, лежащие после деформации в нейтральном слое В В — волокна, отстоящие после деформации на произвольном расстоянии у от нейтрального слоя р — радиус кривизны волокон, лежащих в нейтральном слое.  [c.150]


Плоский поперечный изгиб. Пусть поперечное сечение прямого стержня имеет две оси симметрии х, у. Пусть, далее, на этот стержень в одной из плоскостей, содержащих ось стержня г и одну из осей симметрии, х или у, его поперечного сечения, действуют сосредоточенные силы и распределенная нагрузка. В этих условиях изгиб стержня происходит в плоскости действия нагрузки и его упругая линия будет плоской кривой. Такой изгиб называют плоским. Чистый изгиб, рассмотренный в предыдущем параграфе, является частным случаем плоского поперечного изгиба, при котором нагрузка состоит только из двух изгибающих пар. При поперечном изгибе в произвольном поперечном сечении стержня кроме изгибающего момента действуют поперечная сила Q, а иногда еще и продольная сила N. При отсутствии продольной силы связь между изгибающим моментом М, поперечной силой Q и интенсивностью поперечной нагрузки д определяется формулами (5.3) и (5.4), справедливыми всюду, кроме самих точек приложения сосредоточенных поперечных сил.  [c.127]

Вводные замечания. Ограничимся пока рассмотрением балки, которая имеет продольную плоскость симметрии, являющуюся и плоскостью действия всех внешних сил и моментов, в том числе реактивных. В 12.8 это ограничение будет снято. Будем рассматривать нагрузку, не вызывающую продольной силы. Иными словами, рассмотрим балку, в поперечных сечениях которой возникают лишь изгибающий момент и поперечная сила, действующие также в плоскости симметрии балки. Возникающая при таких условиях деформация называется прямым (плоским) поперечным изгибом балки.  [c.124]

Поперечный изгиб балки вызывается внешними моментами, действующими в плоскости оси балки, или внешними силами, перпендикулярными к оси. Простой (прямой) изгиб получается, если изгибающий момент действует в плоско-  [c.45]

Рассмотрим плоский чистый изгиб прямого стержня. Если на его боковую поверхность нанести сетку в виде продольных и поперечных прямых (рис.8.2а), то при изгибе можно заметить следующее (рис.8.2б)  [c.108]

В.8.11. Какой вид имеет математическое выражение гипотезы плоских сечений при прямом изгибе балки  [c.246]

Консольный стержень, который изгибается приложенной к его концу силой, также может потерять устойчивость. Это выразится в том, что с какого-то момента изгиб в плоскости действия нагрузки (прямой изгиб) начнет сопровождаться изгибом в другой плоскости и кручением. Особенно наглядно это явление можно наблюдать на примере изгиба плоской полосы (рис. 12.28). Читатель вполне может самостоятельно провести такой эксперимент, пытаясь изогнуть плоскую металлическую (слесарную) линейку  [c.402]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

В произвольном месте по длине на уровне z от нейтрального слоя балки выделим бесконечно малый элемент abed, как показано на рис. 12.17, (i. При плоском прямом изгибе по граням аЬ и d будут действовать нормальные и касательные напряжения, определяемые по фор-  [c.204]

Представим себе брус, нагруженный внешними силами, вызывающими его прямой изгиб в плоскостп гОу (рис. 2.107, й). Рассечем его произвольной плоскостью, совпадающей с поперечным сечением бруса, и отбросим одну из частей, отделенных проведенным сечением (рис. 2.107, б). Для определения внутренних силовых факторов, возникающих в поперечном сечении бруса, надо составить уравнения равновесия для внешних и внутренних сил, действующих на оставленную часть. Из теоретической механики известно, что для плоской системы сил статика дает три уравнения равновесия. Если рассмотреть сумму проекций всех сил на ось z, то станет очевидным, что продольная сила N. равна нулю, так как внешние силы не дают проекций на эту осБТ Этй силы параллельны оси у и, следовательно, для обеспечения равновесия в поперечном сечении бруса должна возникнуть сила, направленная вдоль оси у, т. е. поперечная сила Qy. Наконец, третье уравнение равновесия — сумма моментов относительно оси л — убеждает нас в том, что в сечении должна возникнуть внутренняя пара сил, момент которой уравновесит момент внешних сил относительно оси х. Этот момент.  [c.258]

Терминология и определения. В большинстве случаев в учебной литературе под термином косой изгиб понимается изгиб бруса нагрузками, расположенными в одной из плоскостей, проходящих через ось бруса, но не совпадающих ни с одной из его главных плоскостей (иногда говорят главных плоскостей инерции). При этом предполагается, что для всего бруса существует единая силовая плоскость. По предлагаемой терминологии этот случай должен быть назван плоским косым изгибом. Наименование плоский обосновано тем, что упругая линия бруса — плоская кривая, а косым изгиб назван потому, что брус гнется не туда, куда его гнут (куда направлена нагрузка), т. е. плоскость изгиба не совпадает с силовой плоскостью. Из сказанного должно быть ясно, что называть простой изгиб бруса плоским крайне неудачно — термин плоский указывает на вид упругой линии (расположение ее в одной плоскости), а это возможно и при косом изгибе. Кроме того, даже просто стилистически неверно противопоставлять плоский изгиб косому, ясно, что логичнее называть простой изгиб прямым, тогда противопоставление оправдано в одном случае изгиб прямой (брус изгибается в направлении действия сил, т. е. в той же плоскости), в другом — косой (брус изгибается косо , т. е. не в плоскости действия нагрузки).  [c.140]


Пособие содержит материал, относящийся к разделам растяжение, сжатие, сдвиг, геометрические характеристики плоских фигур, кручение, плоский поперечный изгиб, сложное сопротивление прямых брусьев, продольный изгиб, энергетический метод расчета улругих систем, кривые брусья, толстостенные трубы и динамическое дайствие сил.  [c.3]

Задача о прямом изгибе может быть подразделена на две задачи чистый изгиб и поперечный изгиб. Прямым чистым изгибом называется деформирование балки (или ее части) под действием моментов Мх ф О, не зависящих от продольной координаты (рис. 12.1). При таком де(1юрмировании балки плоские до деформирования поперечные сечения остаются плоскими и после деформирования, а касательные напряжения в поперечных сечеяиях равны нулю (т = 0).  [c.246]

Изгиб балки сопровождается искривлением ее оси. При прямом изгибе ось балки превращается в плоскую кривую, )асположенную в плоскости действия поперечных нагрузок. "Ipn этом точки оси получают поперечные перемещения или прогибы V, а поперечные сечения поворачиваются относительно своих нейтральных осей (рис. 9.1). Углы поворота поперечных сечений принимаются равными углам наклона ф касательной к изогнутой оси балки. Прогибы и углы поворота в балках часто называются линейными и угловыми перемещениями.  [c.183]


Смотреть страницы где упоминается термин Плоский прямой изгиб : [c.10]    [c.240]    [c.39]    [c.117]    [c.117]   
Смотреть главы в:

Краткий справочник инженера-механика  -> Плоский прямой изгиб

Сопротивление материалов. Опорный конспект  -> Плоский прямой изгиб

Что нужно знать о сопротивлении материалов  -> Плоский прямой изгиб

Прикладная механика  -> Плоский прямой изгиб



ПОИСК



Брусья прямые квадратного плоские (с узким прямоугольным сечением) — Изгиб — Устойчивость 368370 — Концентрация напряжений

Изгиб 262 — Концентрация напряжений брусьев прямых плоских Устойчивость

Изгиб Нормальные напряжения при плоском изгибе прямого стержня

Изгиб плоский

Изгиб прямой

Изгиб стержня прямой плоский

Нормальные и касательные напряжения при плоском прямом изгибе

Плоский поперечный изгиб прямых брусьев



© 2025 Mash-xxl.info Реклама на сайте