Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теории Задачи технологические

Обзор не претендует на полноту. Мы избегали рассмотрения частных вопросов или специальных проблем. Так, вовсе не затронуты теория пластических оболочек и пластин, течение тонких пластических слоев, приложения теории к технологическим задачам, проблема устойчивости за пределом упругости, динамические задачи и некоторые другие вопросы.  [c.86]

Между технологическими и эксплуатационными показателями качества существует стохастическая связь. Нахождение этой связи, построение математической модели позволяет на этапе ремонта по известным значениям технологических показателей прогнозировать эксплуатационные свойства отремонтированных изделий. В соответствии с 3.4 и 3.5 технологическими показателями являются ошибки механизмов, оцениваемые замыкающими звеньями соответствующих размерных цепей. В теории прогнозирования технологическими показателями называют диагностические параметры или оценочно-нормативные показатели. Определенный набор оценочно-нормативных показателей характеризует состояние объекта. Автомобили и агрегаты представляют собой сложные изделия, технологическое качество которых оценивается большим чис юм показателей. Поэтому получение наиболее полной информации о состоянии изделия по наименьшему количеству показателей является весьма актуальной задачей как в процессе ремонта изделий, так и в процессе их потребления. Это существенна усложняет процесс исследования и построения математической модели.  [c.128]


Исследовательские испытания охватывают разнообразные задачи, возникающие в ходе создания физической теории, синтезирования, технологической разработки способа производства или конструктивного применения изоляционного материала. В отличие от рассмотренных выше видов контроля, здесь испытания носят специфический характер, определяемый целями исследования. Для этих испытаний применяют опытные несерийные образцы и при том нередко в больших количествах, позволяющих выяснить необходимые закономерности. Наряду с типовой измерительной аппаратурой при исследовательских испытаниях приходится пользоваться специально созданными установками, проводить измерения по особой программе и т. п.  [c.10]

Уравнения вязко-пластической среды используются для решения различных задач технологического типа, связанных с обработкой металлов давлением, с течением разнообразных пластических масс в трубах и щелях, в теории  [c.399]

К первым трудам по технологии машиностроения относятся работы А. П. Соколовского, вышедшие в 1930—1932 гг. Обобщением опыта автотракторной промышленности стали Основы проектирования технологических процессов А. И. Каширина (1933 г.) и Технология автотракторостроения В. М. Кована (1935 г.). В 1933 г. Б. С. Балакшин провел теоретические исследования по технологии машиностроения, основные положения и выводы которых, изложенные нм в книге Теории размерных цепей , дали возможность специалистам путем предварительных расчетов решать технологические задачи, обеспечивающие повышение точности изготовления машин.  [c.7]

Теория долговечности, строящая выводы на статистических данны.х. в сущности приложима к изделиям массового производства и в гораздо меньшей степени — к изделиям мелкосерийного и тем более единичного выпуска. В описанной выше трактовке теория долговечности исходит с феноменологических позиций, оперируя цифрами достигнутой долговечности. Гораздо большее значение имеет разработка методов повышения долговечности. Здесь на первый план выдвигается за/гача изучения физических закономерностей разрушения, износа и повреждения деталей (в зависимости от вида нагружения, свойств материала, состояния поверхностен и т. д.). Задачи эти настолько дифференцированы и специфичны, что вложить их в рамки общей теории долговечности едва ли возможно. Они решаются методами теории прочности, теории износа, а главным образом целенаправленной конструкторской и технологической работой над повышением долговечности.  [c.28]


Конечная цель сварочного производства — выпуск экономичных сварных конструкций, отвечающих по своим конструктивным формам, механическим и физическим свойствам тому эксплуатационному назначению и условиям работы, для которых они создаются. Обеспечение рациональных форм и определение оптимальных сечений элементов конструкций относится к задачам проектирования. Получение необходимых механических и физических свойств сварных соединений — главная задача, решение которой должны обеспечить технологические процессы сварки. Теория сварочных процессов призвана давать правильное описание совокупности явлений, которые составляют сущность процесса сварки.  [c.5]

В простейших задачах, к которым относится пластическое растяжение, нет необходимости прибегать к совокупности основных уравнений теории пластичности, так как многие из этих уравнений удовлетворяются тождественно. Растяжение редко встречается в технологических схемах изготовления деталей как самостоятельная операция, особенно при штамповке и ковке. Пример операции растяжения — изготовление передней оси  [c.117]

Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]

Не составляет труда сформулировать задачи динамики, статики, теории колебаний в случае, когда возникают некоторые принципиальные усложнения например, когда тело ограничено несколькими поверхностями, на которых заданы условия разного типа на одной группе поверхностей — смещения, а на остальных— напряжения, или же когда тело составлено из различных участков, каждый из которых заполнен средой со своими значениями постоянных Ламе. В этом случае разыскивается решение для каждой из областей и для полной постановки задачи привлекаются условия на поверхностях, вдоль которых среды сопрягаются. На этих поверхностях обязательно должны выполняться условия непрерывности нормальной компоненты смещений и вектора напряжений (относительно нормали к поверхности). При необходимости дальнейшей конкретизации краевых условий исходят из тех или иных соображений технологического характера.  [c.250]

Приведены основные законы и расчетные соотношения термодинамики применительно к реальным процессам природы, которые иллюстрируются примерами расчетов при решении задач энергетики в нефтяной и газовой промышленности. Изложены основные положения теории теплопередачи. Указаны области и особенности применения законов теплообмена в технологических процессах разработки и эксплуатации нефтяных и газовых месторождений, транспорта нефти и газа. Уделено внимание экономии топливных ресурсов страны, рациональному использованию установленного оборудования и охране окружающей среды.  [c.2]


Особенность данной книги состоит в том, что в ней осуществлена систематизация задач теоретического исследования динамических свойств технологических аппаратов и способов их рещения. Технологический аппарат и процесс, который в нем осуществляется, с самого начала рассматриваются как технологическая система, т. е. ее математическое описание представляется в форме оператора, связывающего входные и выходные параметры процесса. Такой подход весьма удобен при построении моделей сложных систем, состоящих из нескольких связанных между собой технологических аппаратов. В связи с этим изложение динамики химико-технологических процессов дается на основе общих понятий теории операторов. Элементы этой теории, используемые при исследовании динамики, изложены во второй главе.  [c.4]

Интегральные операторы вида (2.1.8) играют большую роль в теории функциональных операторов, представляя собой универсальную форму записи линейных операторов. Часто задача исследования свойств оператора некоторого объекта решается с помощью представления этого оператора в форме (2.1.8) и дальнейшего изучения свойств функции Q t,x), которая является важной характеристикой всякого технологического объекта, поскольку знание ядра интегрального оператора Q( , т) позволяет по любой входной функции объекта u(t) с помощью соотношения (2.1.8) определить соответствующую выходную функцию у( ).  [c.43]

Отмеченное свойство интегрального уравнения (3.3.1) (неустойчивость решения задачи обращения преобразования Лапласа) заставляет с большой осторожностью использовать методы приближенного решения, связанные с заменой точного значения передаточной функции W p) приближенным. Даже если это приближенное значение Wi p) на всей полуоси [О, оо) мало отличается от точного значения W(p), приближенное значение весовой функции gi t), полученное из W p), может на конечных интервалах сильно отличаться от точного значения g t). Однако, несмотря на это, существует множество достаточно корректных методов приближенного обращения преобразования Лапласа, применимых к функциям W(p), которые при этом должны удовлетворять определенным условиям. Такими условиями, в частности, являются монотонность и ограниченность функции W р). Как будет видно в дальнейшем (см. гл. 4 и 5), характер протекания большинства химико-технологических процессов соответствует монотонным и ограниченным передаточным функциям, для которых существуют достаточно строгие методы приближенного определения весовой функции g i). Подробное изложение теории приближенного обращения преобразования Лапласа дано в работах [5, 6].  [c.109]

Задачи теории механизмов и машин решают на ЭВМ в тех случаях, когда решение связано с поиском оптимальных вариантов и большим объемом вычислительных работ Начальным этапом является постановка задачи. На основании глубокого изучения технологического процесса определяют цель проектирования, основные технико-экономические и эксплуатационные характеристики, технические условия работы механизма или машины.  [c.23]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. В рамках химической термодинамики изучаются физикохимические превращения вещества, определяются тепловые эффекты реакций, рассчитывается химическое равновесие систем. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и является (вместе с теорией теплообмена) теоретическим фундаментом теплотехники. На ее основе осуществляют расчет и проектирование всех тепловых двигателей — паровых и газовых турбин, реактивных и ракетных двигателей, двигателей внутреннего сгорания, а также всевозможного технологического оборудования — компрессорных мащин, сушильных и холодильных установок и т. д.  [c.6]

В настоящем разделе ставилась цель показать, что современный уровень развития теории деформационного упрочнения поликристаллов позволяет уже перейти от эмпирических методов к строго физическим решениям конкретных прикладных задач, связанных с анализом технологических режимов обработки давлением, а также с объяснением и прогнозированием комплекса механических свойств материала, прошедшего обработку. В качестве примера рассмотрим  [c.181]

Однако рассмотренные двухмерные зависимости не позволяют найти оптимальный технологический режим, обеспечивающий получение глобального экстремума оптимизируемого показателя качества покрытия, так как они не учитывают взаимного влияния этих параметров на свойства покрытий. Сложность и недостаточная изученность явлений, лежащих в основе данного технологического процесса, не позволяют получить аналитическое решение поставленной задачи, поэтому мы использовали экспериментально-статистические методы регрессионного анализа и теории планирования экспериментов [2], позволяющие получить математическую модель и определить оптимальные значения режимных параметров процесса с учетом их взаимного влияния на свойства покрытий.  [c.88]

Одной из естественных тенденций в развитии машин явилась тенденция к повышению их рабочих скоростей, мощностей и передаваемых сил. До Великой Октябрьской социалистической революции вопросы динамики машин и механизмов были развиты сравнительно мало. В основном изучалась динамика паровых машин, некоторые вопросы динамики поршневых двигателей внутреннего сгорания и теория регулирования неравномерности движения этих машин. Динамика технологических машин начала разрабатываться только после революции. Первые исследования по динамике технологических машин были посвящены сельскохозяйственным машинам. В основу их были положены труды акад. В. П. Горячкина. До 30-х годов нашего столетия работы по динамике машин и механизмов продолжали носить прикладной характер. Рассматривались отдельные задачи динамики применительно к авиадвигателям, сельскохозяйственным, текстильным, пищевым, горным и другим машинам. В основном рассматривались задачи кинетостатики, уравновешивания масс, подбора маховых масс и некоторые вопросы крутильных колебаний валов двигателей внутреннего сгорания. В период с 1930 по 1940 г. на основе развития теории структуры механизмов появляются работы более общего плана, в которых излагаются методы кинетостатического исследования как плоских, так и пространственных механизмов. Начинают развиваться методы динамического исследования зубчатых, кулачковых и других видов механизмов.  [c.29]


Новые и важные результаты, достигнутые по общим методам теории малых упруго-пластических деформаций и решение конкретных задач о напряженных состояниях за пределами упругости (Н. М. Беляев, А. А. Ильюшин), предопределили успешное их применение в практике расчета высоконапряженных деталей турбин, химических и энергетических агрегатов высокого давления, а также при проектировании технологического оборудования. Это способствовало более полному использованию материала в деталях и обеспечивало более правильное определение запасов прочности.  [c.37]

Выводы теории точности нашли применение при проектировании машин и приборов и технологических процессов по их изготовлению. Большую роль эта теория сыграла в разработке управляющих и счетно-решающих устройств [39]. Высокий теоретический уровень современных исследований — залог дальнейших успехов в решении задач но точности машин и приборов.  [c.46]

В 30-х годах современная теория автоматического регулирования только зарождалась. В наследство от классической теории регулирования хода машин, основы которой были заложены Вышнеградским и Стодолой, был получен критерий устойчивости Раута — Гурвица для определения устойчивости линейных систем, кривые Вышнеградского, пригодные для выбора параметров линейных систем 3-го порядка и некоторые другие результаты. Потребности развития новой техники и автоматизации технологических процессов настоятельно требовали введения более сложных и качественных систем автоматического регулирования. Для выполнения этих задач требовались новые эффективные методы расчета автоматических регуляторов. Результаты, полученные в классической теории регулирования хода машин, постепенно были распространены на регулирование электрических параметров, тепловых процессов и т. д. К концу 30-х годов в теории регулирования наметился серьезный сдвиг, связанный с введением частотных представлений. Повышение быстродействия и увеличение точности производственных процессов требовали от автоматических регуляторов не только устойчивости, но и высокого качества регулирования. Таким образом, в 30-е годы расширяется понятие о регулировании машин, постепенно осуществляется переход к регулированию технологических процессов и выдвигаются новые задачи теории регулирования исследование качества регулирования, синтез регуляторов и т. д. [48].  [c.237]

Одной из актуальных задач теории машин и механизмов является задача диагностирования той или иной работающей машины, оценка ее работоспособности, определяемой качеством выполнения технологических операций или процессов. Отклонение от необходимого (заданного) качества выполнения технологических операций обусловлено изменением динамических свойств работаю-ш ей машины или механизма, что и свидетельствует о появлении дефекта в них.  [c.59]

Последние годы своей жизни Г. А. Шаумян много работал над вопросами теории производительности труда и экономической эффективности автоматизации как инструмента анализа и прогнозирования тенденций технического прогресса в машиностроении, его закономерностей и противоречий. Эта теория позволяет выражать любые критерии экономической эффективности не через денежные показатели, а непосредственно через технико-экономические характеристики машин, т. е. появляется возможность непосредственно оценивать влияние совершенствования любых технологических, конструктивных, эксплуатационных параметров на экономические показатели, решать проблемные и прикладные задачи. Важнейшее значение сохраняет сформулированный Г. А, Шаумяном тезис о том, что генеральным направлением автоматизации является не освобождение человека от обслуживания современного оборудования, а разработка таких прогрессивных технологических процессов и высокопроизводительных средств производства, которые были бы вообще невозможны, если бы человек по-прежнему оставался участником технологического процесса.  [c.7]

Указав на положительные стороны книги Шаумяна (своевременность тезиса о борьбе за сокращение потерь времени, способствующей эффективному использованию оборудования и являющейся одной из задач социалистического хозяйства постановка вопроса о необходимости пересмотра теоретических основ управления стойкостью режущего инструмента и скорости резания и пр.), Ученый совет остановился и на ее недостатках. Например, Шаумян не разработал в ней методику технологических нормативов и экономических обоснований целесообразности варианта конструкций автоматических машин с учетом всех условий их эксплуатации. Книга не исчерпывает всех вопросов теории проектирования автоматов. В книге недостаточно полно раскрыта прогрессивная роль электро-и гидроавтоматики и т. д. В то же время Ученый совет МВТУ не согласился с оценкой книги Шаумяна, данной специалистами ЭНИМСа. В частности, совет подчеркнул, что принцип оценки производительности рабочих машин, положенный Шаумяном в основу рассматриваемых в книге вопросов, является в своей основе общепринятым. Что касается материала, посвященного влиянию угла давления на коэффициент полезного действия кулачкового механизма, то, по мнению совета, он является новым и впервые освещается Шаумяном.  [c.59]

Большинство технологических, конструктивных, компоновочных и эксплуатационных параметров автоматизированных систем машин выбирают на основе таких разделов науки о машинах, как теория производительности машин, теория надежности машин, инженерная теория экономической эффективности, теория автоматического управления и регулирования, теория структурного построения машин-автоматов и их систем, теория оптимального синтеза и т. д., которые в совокупности и составляют научно-теоретические основы комплексной автоматизации. Инженеры, занятые проектированием и эксплуатацией автоматизированного оборудования, должны владеть системным подходом при поиске оптимальных решений многовариантных задач автоматизации производства. При выработке такого подхода во многом может быть полезен материал предлагаемой книги.  [c.5]

Таким образом, главными задачами технического контроля следует считать своевременное обнаружение дефектов в объектах контроля и предотвращение выпуска предприятием продукции, не соответствующей установленным требованиям. В этой связи необходимо подробно рассмотреть место и роль технического контроля в системе управления качеством продукции в машиностроительном производстве. При этом можно воспользоваться терминами и обозначениями, принятыми в общей теории управления Р,ф — текущее значение одного из параметров, характеризующих фактическое состояние объекта управления, в данном случае одной из производственных операций — номинальное значение этого параметра, заданное программой управления (нормативно-технической или технологической документацией) а — предельное допустимое отклонение значения параметра Р от номинального значения. Разность  [c.131]

Остается сказать несколько слов о комплексе решений в целом. Имея в виду, что поставлен вопрос об оптимизации всего комплекса решений в целом, если учесть, вдобавок, что оптимизация даже элементарных решений обычно не относится к числу легких задач, внешняя сложность схемы может внушить представление о дебрях , куда лучше не забираться со сложным аппаратом теории выбора решений и достаточно громоздкими математико-статистическими методами. Рассматриваемый комплекс решений не относится к простым, все же чисто внешнее впечатление от схемы сильно сгущает краски. На ней совмещены а) последовательность действий, связанных с технологическим процессом б) последовательность действий, связанных с выбором решений в) зависимость распределений. Каждая из перечисленных схем, взятая отдельно и выраженная с помощью соответствующей символики, выглядела бы гораздо проще. С другой стороны, как уже отмечалось, рассмотренный пример встречается не так уж часто, и в большинстве случаев математическая модель комплекса решений гораздо проще.  [c.49]


Для эффективного управления технологическими процессами с использованием ЭВМ необходимо располагать подробной информацией о том, какие факторы влияют на суммарную погрешность обработки, какова сила их влияния. Для решения этой задачи рекомендуется использовать математический аппарат, действие которого основано на применении дисперсионного анализа и теории планирования эксперимента. Это позволяет после предварительного обследования операций (для выбора факторов, которые могут оказывать влияние на суммарную погрешность обработки) и выполнения минимально необходимого числа измерений (позволяющих установить связь между значениями каждого фактора и величиной суммарной погрешности) количественно определить степень влияния факторов и их взаимодействий на выходные параметры детали.  [c.228]

Правильное решение проблемы точности и производительности невозможно без анализа и расчета точности технологических процессов. Однако современные, теоретико-вероятностные и другие методы еще недостаточно используются в технологии машиностроения и приборостроения. В многочисленных трудах по теории вероятностей и математической статистике приводится обширный материал, использование которого при решении практических инженерных задач нередко весьма затруднительно. Это объясняется тем, что изложение материала часто дается в отрыве от задач машиностроительного и приборостроительного производства. Для производственной практики нужны соответствующие методики, позволяющие на должном теоретическом уровне, но в то же время в удобной форме достаточно быстро выполнять такой расчет и с его помощью анализировать точность и производительность как существующих, так и вновь проектируемых технологических процессов и находить пути их совершенствования. С другой стороны, за последние годы создан ряд таких методик для конкретных производственных условий, в том числе институтами ВНИИС и ВНИИНМАШ Госстандарта СССР. Однако эти методики не имеют такого обязательного характера, как государственные стандарты, а недостаточный уровень подготовки многих производственников в области теории вероятностей и математической статистики затрудняет их использование.  [c.33]

Этот вопрос необходимо четко разграничить на две самостоятельные задачи теории одну — относящуюся к системам автоматического управления и автоматического регулирования режимами производств, комплексно автоматизируемых на базе электроники, новейших вычислительных машин, счетно-решающих приборов, программирования и т. п. другую — относящуюся к существующим и модернизируемым производствам сегодняшнего и завтрашнего дня, где управление технологическим процессом сегодня ограничивается, в сущности, его первоначальной настройкой, подналадками, изменяющими только положение инструмента, и, наконец, сменой инструмента, ставшего работать некачественно.  [c.71]

Второй метод —приближенный — основан на учете лишь одного или нескольких параметров, преобладающее влияние которых очевидно из рассмотрения конструкции механизма и условий его работы. Указанный метод используется, в частности, в теории точности механизмов, где применение его основано на принципе независимости действия первичных ошибок в случае их малости. Этот принцип значительно упрощает задачу анализа геометрической и технологической точности механизмов (см., например, [15, 17, 18, 41, 80]). При решении динамических задач этот метод зачастую оказывается неприменимым, поскольку ему свойственен тот существенный недостаток, что он не содержит формальных способов сложения результатов исследований, проведенных с учетом различных групп параметров.  [c.15]

Теория и практика стандартизации привели к двум направлениям ее развития первое — стандартизация от частного к целому второе — стандартизация от целого к частному. Исторически сложившееся развитие стандартизации характеризуется преимущественно направлением от частного к целому. Это направление соответствовало решению отдельных задач, которые ставились перед авторами разрабатываемых проектов стандартов. На основе такого направления стандартизации возникли многие первые в СССР стандарты на крепежные детали, профили проката, сортаменты труб, некоторые общие детали машин и т. п. Появились стандартные размерные ряды изделий, основанные на арифметических прогрессиях, причем достигнутые успехи по их стандартизации выдвинули идею целесообразности стандартизации более широкой номенклатуры деталей машин в направлении от частного к целому, что теоретически считалось тогда вполне возможным и целесообразным. Номенклатура деталей машин, инструментов и элементов технологической оснастки, охваченных такими стандартами, начала расширяться, но все же с тенденцией к медленному затуханию.  [c.21]

Особую благодарность авторы приносят профессору А. П. Бессонову, доценту А. В. Желиговскому и кафедре теории механизмов и машин Московского технологического института пищевой промышленности (заведующий кафедрой профессор В. В. Гортинский), сделавшим ряд ценных замечаний при рецензировании рукописи, а также своим коллегам по кафедре теории механизмов и машин Московского ордена Ленина авиационного института им. С. Орджоникидзе, взявшим на себя труд внимательного просмотра всей рукописи в целом, содержания отдельных задач, ответов к ним и разрешившим воспользоваться рядом примеров, которые были использованы в их преподавательской деятельности.  [c.6]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Т е х и и ч е-ская термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуш,ествля-ют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.  [c.6]

Теория падсжиостп, прогнозируя отказы, ааиболсе часто встречающихся па практике, может служить цепным подспорьем в рз ках машиностроителя. На долю последнего выпадает главная, активная часть задачи - устранение слабых мест конструкции и повышение ее надежности в целом. Привлекая все современные конструкторские и технологические приемы, принципиально возможно (во всяком случае для Многих категорий машин) добиться полного устранения отказов, за исключением аварийных, чисто случайных.  [c.40]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов човки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений  [c.250]

Рассмотрим плоскую задачу теории упругости для кусочнооднородной среды. Пусть имеется многосвязная область D, ограниченная гладкими контурами L, (/ = 0, 1, 2,. ... т), из которых все контуры Lj (/ 0) расположены вне друг друга, а контур 0 охватывает все остальные. Область D заполнена упругой средой с постоянными Яо и цо, а области )/ (ограниченные контурами Lj) средами с постоянными X/ и ц/ (индекс буквы соответствует индексу области). Далее, для удобства будем использовать постоянные х/, различные для плоской деформации и плоского напряженного состояния (см. 4 гл. III). На границах раздела сред следует, как обычно, задавать. те или иные условия сопряжения. Например, такой известной технологической операции, как посадка с натягом, соответствует задание скачка вектора смещений 6/(0- В случае же плоско-напряженной деформации имеет смысл постановка таких условий, при которых внешние напряжения пропорциональны (в случае, когда толщины пластинки и включений различны )).  [c.413]

Данный учебник предназначается для студентов геологических, электротехнических, химико-технологических и других специальностей, изучающих теоретическую механику в объеме 85 часов аудиторных занятий и не имевших до сих пор своего стабильного учебника. При малом объеме и сжатых сроках изучения (и с учетом того обстоятельства, что для студентов данных специальностей теоретическая механика не является определяющим предметом в их профессиональной подготовке) деление учебной литературы на учебник, задачник и методическое пособие для решения задач представляется нецелесообразным. Кроме того, в соответствии с современными тенденциями развития вечернего и заочного образования, учебник должен содержать элементы самоконтроля, способствующие самостоятельной проработке материала студентом-заочннком. Поэтому данный курс является комплексным и содержит теоретическую часть, методические указания по применению теории к решению задач, нрихмеры решения задач, вопросы для повторения и минимальный набор задач для аудиторной и домашней работы студентов.  [c.7]

Научные работы, посвященные вопросам теории, исследования и проектирования механизмов, имеют почти двухсотлетнюю давность. Зарождающееся машиностроение, быстро развивающееся в те годы за счет интуиции и индивидуальных способностей талантливых одиночек-изобретателей и производственников, требовало научной оценки создаваемых механизмов для их последующего совершенствования в соответствии с требованиями производства. Наряду с задачей создания двигателей как источников механического движения возникла неотложная задача механизации основных технологических операций. В процессе ее решения были созданы различные механизмы, причем механизация одной основной операции приводила к созданию однооперационных машин. Это явилось первым шагом развития машиностроения.  [c.6]


Теория циклограммирования МА и АЛ охватывает задачи синтеза и анализа циклограмм и тактограмм технологических машин.  [c.465]

К середине XIX в. в России выросла плеяда талантливых ученых, заложивших основы современной теории механизмов и машин. Основателем русской школы этой науки был великий математик акад. П. Л. Чебышев (1821—1894 гг.), которому принадлежит ряд оригинальных исследований, посвяш,енных синтезу механизмов, теории регуляторов и зубчатых зацеплений, структуре плоских механизмов. Он создал схемы свыше 40 различных механизмов и большое количество их модификаций. Акад. И. А. Вышнеградский явился основателем теории автоматического регулирования его работы в этой области нашли достойного продолжателя в лице выдаюш,егося русского ученого проф. Н. Е. Жуковского, а также словацкого инженера А. Сто-долы и английского физика Д. Максвелла. Н. Е. Жуковскому — отцу русской авиации — принадлежит также ряд работ, посвященных решению задачи динамики машин (теорема о жестком рычаге), исследованию распределения давления между витками резьбы винта и гайки, трения смазочного слоя между шипом и подшипником, выполненных им в соавторстве с акад. С. А. Чаплыгиным и др. Глубокие исследования в области теории смазочного слоя, а также по ременным передачам выполнены почетным академиком Н. П. Петровым. В 1886 г. проф. П. К. Худяков заложил научные основы курса деталей машин. Ученик Н. А. Вышнеградского проф. В. Л. Кирпичев известен как автор графических методов исследований статики и кинематики механизмов. Он первым начал читать (в Петербургском технологическом институте) курс деталей машин как самостоятельную дисциплину и издал в 1898 г. первый учебник под тем же названием, В его популярной до сих пор книге Беседы о механике решены задачи равновесия сил, действующих в стержневых механизмах, динамики машин и др. Выдающийся советский ученый проф. Н. И. Мерцалов дал новые оригинальные решения задач кинематики и динамики механизмов. В 1914 г. он написал труд Динамика механизмов , который явился первым систематическим курсом в этой области. Н. И. Мерцалов первым начал исследовать пространственные механизмы. Акад. В. П. Горячкин провел фундаментальные исследования в области теории сельскохозяйственных машин.  [c.7]

Освоение производства приборов и новой техники измерения шло настолько быстро, что к 1940 г. на некоторых предприятиях были внедрены методы автолштического контроля изделий. Массовое производство изделий можно осуществить лишь при определенной системе допусков на отклонения параметров. До 1935 г. разработка допусков велась научно-исследовательским сектором завода Калибр и одним из управлений ВСНХ. В 1935 г. было организовано Научно-исследовательское бюро взаимозаменяемости под руководством проф. И. Н. 1 ородецкого. Почти все государственные стандарты на допуски изделий и калибров для их контроля разрабатывались в этом бюро [7]. Эта же организация стала ведущей в области разработки измерительных приборов для машиностроения. Одновременно развернулись работы по взаимозаменяемости и технике измерений в научно-исследовательских организациях различных отраслей промышленности. Решения поставленных задач исследования все в большей степени обосновывались теоретическими положениями. Так, в работах Б. С. Балакшина [16] и И. А. Бородачева [30] при исследовании размерных цепей расчет допуска на замыкающее звено выполнен на основе теории вероятностей. В 1950 г. были опубликованы результаты исследований проф. Н. А. Калашникова [881 по вопросам точности зубчатых колес. Вопросы точности стали рассматриваться не только по отношению к готовому изделию, но и по отношению к технологическому процессу их изготовления. В 1939 г. проф. В. М. Кован и А. Б. Яхин рассмотрели теоретические вопросы технологии машиностроения.  [c.45]

В восстановительный период развитие теории автоматического регулирования характеризуется продолжением деятельности в этой области тех небольших научно-исследовательских центров, которые сложились в высшей технической школе еще до 1917 г. Одну из первых советских работ по теории регулирования выполнил в Ленинградском технологическом институте в 1922 г. И. Н. Вознесенский (1887—1946 гг.) на тему О регуляторах непрямого действия . В 1924 г. К. Э. Рерих в Днепропетровском горном институте заканчивает свое обстоятельное подкрепленное многочисленными экспериментами исследование о влиянии трения на процесс регулирования. Затем им были опубликованы результаты нового исследования о влиянии быстроходности двигателя на прерывный процесс регулирования центробежных регуляторов. В Днепропетровском горном институте продол кал свою работу по регулированию Я. И. Грдина, который в 1927 г. в работе К вопросу о динамической устойчивости центробежных регуляторов проанализировал ряд задач динамической устойчивости при непрерывном регулировании, а три года спустя рассмотрел этот же вопрос при прерывистом регулировании.  [c.237]

Несколько особняком стоит Московский университет. Здесь после организации Московского технического училища, в которой принял самое деятельное участие профессор университета А. С. Ершов, стало традицией, что кафедры в этих высших школах занимали одни и те же профессора. После А. С. Ершова прикладной механикой занимался Ф. Е. Орлов, после него — Н. Е. Жуковский. Известны основополагаюш ие работы Н. Е. Жуковского в области аэродинамики, благодаря которым он получил заслуженное имя отца русской авиации . Менее известно, что диапазон вопросов прикладной механики, которыми занимался Н. Е. Жуковский, не ограничивался указанным направлением, а был весьма широк. Он занимался вопросами аналитической механики, теории механизмов, теории регулирования, задачами динамики машин и сооружений, задачами деталей машин и другими. Создавая свою школу в области прикладной механики, он полагал, что исследователи в этом направлении должны иметь глубокое математическое и кроме того инн енерное образование. Поэтому его ученики — Н. И. Мерцалов, В. П. Горячкин, А. И. Сидоров, Д. С. Зернов, Д. П. Рузский — после окончания математического отделения университета шли на механическое отделение Московского технического училиш,а или Петербургского технологического института, где и завершали свое образование.  [c.10]

Производительность определяется количеством готовой продукции, выдаваемой машиной в единицу времени. Расчет производительности машин, базирующийся на подробном анализе машинного технологического процесса и систем его автоматизации, является одной из важнейших задач общей теории машин-автоматов. Такой расчет тесным образом связан с цикличностью машин и с определением цикловых и внецикловых потерь времени. Методы расчета производительности машин имеют свои разновидности, зависящие от трша машин, их технологических процессов и условий эксплуатации.  [c.74]

В итоге создался психологический барьер, мещавщий требуемому комплексному развитию стандартизации в машиностроении. Теперь это, бесспорно, главнейшая, буквально центральная задача стандартизации, нуждающаяся в серьезной теоретической и методической разработке. Задача эта, конечно, очень сложная. Но, разумеется, если не искать новых путей и методов, особенно в области технологической стандартизации, из боязни ошибиться, то такую проблему никогда не решить. На начальном этапе, который в настоящее время преодолевается, приходилось идти ощупью, особенно когда теория не освещала пути, потому что и самой теории еще не было. Случалось и так, что теоретические положения отставали от опытных проработок, которые опережали создание стройной, убедительной теории. Поэтому сейчас основы решения данной проблемы кажутся уже более реальными. Главная задача теперь заключается в том, чтобы общую проблему качества машин (оборудования) подразделить на частные проблемы, которые будут решать специалисты соответствующих профилей.  [c.142]


Смотреть страницы где упоминается термин Теории Задачи технологические : [c.7]    [c.73]    [c.296]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.83 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.83 ]



ПОИСК



Технологические задачи

Технологический процесс как объект управления Основные понятия теории управления функции и задачи управления технологическими процессами



© 2025 Mash-xxl.info Реклама на сайте