Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диагностический параметр 22, 79 (онр

Номенклатура диагностических параметров автомобильных двигателей определяется ГОСТ 23435—79, а методика испытаний по токсичности ГОСТ 17.2.2.03—77. В них предусмотрено использование только режимов холостого хода двигателей как воспроизводимых в любых условиях. Если на АТП имеется роликовый мощност-ной стенд, то необходимо расширить число контрольных точек с использованием нагрузочных режимов проверки двигателей по ток-90  [c.90]


Занятие 2. Номенклатура диагностических параметров двигателей. Технология проведения диагностики, место контроля токсичности в комплексной диагностике. Диагностическое оборудование и приборы, применяемые на  [c.113]

Занятие 2. Номенклатура диагностических параметров дизелей. Место контроля дымности в комплексной диагностике дизелей. Дизель-тестеры. Стенды для испытаний автомобилей и двигателей под нагрузкой. Методы диагностики топливной аппаратуры. Рациональная технология проведения контроля дымности, диагностики и обслуживания дизелей применительно к данному ДТП.  [c.114]

Выбор наиболее нагруженных несущих элементов аппаратов выполняется на основе информации о конструктивных особенностях исследуемого оборудования, условиях их эксплуатации и статистических данных о повреждаемости. Вследствие сложных условий работы металла аппаратов оценка их технического состояния должна предусматриваться по комплексу диагностических параметров.  [c.170]

Повышение качества изготовления и эксплуатации аппаратов в большой степени зависит от создания и внедрения наиболее совершенных средств технического диагностирования. Проверка исправности, правильности функционирования, поиска дефектов и оценка технического состояния аппаратов требует измерения несколько сотен параметров качества, представляющих собой свойства объектов, обусловливающих их соответствие предъявляемым нормативным фе-бованиям. Известны группы диагностических параметров и признаков, характеризующих технические, эксплуатационные, физические, механические и другие свойства объектов. Техническое диагностирование осуществляется посредством измерения количественных значений параметров качества, которые, в свою очередь, зависят от влияющих на них факторов механических нагрузок и климатических воздействий, воздействий термических и коррозионно-активных сред. Иногда общее число влияющих факторов превосходит несколько десятков. Они должны подвергаться измерениям при техническом диагностировании аппаратов.  [c.223]

Количество диагностических параметров растет при усложнении конструкции и габаритных размеров аппарата. Помимо значительных габаритов неоднозначны конструктивные оформления сосудов (аппаратов), работающих под давлением и выполняющих различные технологические функции теплообменники, емкости, колонные аппараты.  [c.223]

Принятие решения об оценке технического состояния объекта осуществляется сравнением мгновенного Dit) и предельного D p значений диагностического параметра, Для исправных состояний деталей, формирующих подмножество R системы, в блоке расчета остаточного ресурса Рр на основе модели надежности детали прогнозируется срок ее службы.  [c.16]


Гидродинамическое моделирование. Нестационарное турбулентное течение, создающее гидроупругие возмущения в потоке, при исследованиях неподвижных элементов гидромашин заменяется модельным потоком, включающим в себя квазистационарную и спектральную модели течения [1]. Анализ этих моделей позволил установить диагностические параметры, идентифицирующие модельный турбулентный ноток.  [c.104]

В модельном эксперименте изменение диагностических параметров квазистационарной и спектральной модели нестационарного турбулентного течения производилось в результате целенаправленного изменения геометрических соотношений, характеризующих входной патрубок насоса. Для входного патрубка насоса, изображенного на рис. 3, а, различные сочетания геометрических соотношений достигались путем изменения диаметра камеры Z) входного D, ж выходного диаметров, изменение  [c.106]

Выбор диагностического параметра для конкретного агрегата происходит в соответствии с общими  [c.277]

На рис. 14 показан обобщенный алгоритм оценки технического состояния станочной АЛ с жесткой связью по диагностическому параметру длительность цикла .  [c.278]

Выбор методов и средств контроля и диагностирования механизмов автоматического оборудования в значительной степени определяется системой их программного управления . В металлообработке широко распространены аналоговые системы, в которых в качестве программоносителей используются копиры, кулачки, упоры. Например, для станков-автоматов с едиными валами управления выбирались диагностические параметры, несу-ш,ие наибольшую информацию о работе различных целевых механизмов. Одним из таких параметров является крутяш ий  [c.41]

Однако инструмент часто выходит из строя из-за сколов и пО ломок режущей части. В этом случае в зависимости от формы скола диагностические параметры низкочастотных колебаний имеют большой разброс, что определяет низкую точность оценки износа. Данный разброс объясняется изменением демпфирования в замкнутой системе, которое зависит от формы задней поверхности инструмента. Поэтому потребовалось расширить сферу поиска диагностических параметров колебаний, менее зависимых от формы износа.  [c.51]

I Выбор контрольных и диагностических параметров, процедур их измерения и обработки, датчиков и аппаратуры  [c.99]

Получение эталонов контрольных и диагностических параметров  [c.99]

Узел Привод Суммарная масса, момент инерции Характерные обнаруженные недостатки Диагностические параметры и ПК Модернизация  [c.101]

Выбор наиболее удобных диагностических параметров и модернизация, повышающая надежность и контролепригодность, уменьшают время технического обслуживания, т. е. непосредственно повышают производительность оборудования кроме того, она растет благодаря увеличению его точности и быстроходности. Все это говорит в пользу применения описанной методики диагностического исследования механизмов в условиях комплексной автоматизации производства.  [c.106]

Рассмотренные модели облегчают выбор диагностических параметров и разработку алгоритмов диагностирования поворотно-фиксирующих устройств они были использованы при создании встроенных систем диагностирования.  [c.121]

В результате анализа статистических данных, накопленных в результате комплексных исследований механизма привода, представляется возможность расшифровки кривых регистрируемых параметров и построения эталонных осциллограмм. Для определения оптимальных величин и характера изменения диагностических параметров на различных участках осциллограммы проводится расчет механизма аналитическим путем (в частности, с помощью методов математического моделирования). Кроме того, экспериментально определяют величины этих параметров у большого числа станков одной модели после их сборки, регулировки и обкатки. Эталонную осциллограмму выбранного параметра для каждой модели станка получают путем статистической обработки записей этого параметра у станка, изготовленного, отрегулированного и приработанного в соответствии с техническими условиями, и сравнивают полученную кривую с расчетными данными. Например, эталонная осциллограмма крутящего момента на ходовом винте привода продольной подачи (рис. 4, поз. 20) должна иметь характер периодически изменяющейся кривой без резких скачков и пиков, а максимальная величина крутящего момента не должна превышать 2,8—3,0 кгм при рабочей подаче на холостом ходу.  [c.78]


К третьей группе относятся модели, построенные с учетом упругости, сжимаемости жидкости, инерционности нескольких масс, зазоров. Они позволяют добиться хорошего совпадения с экспериментом но силовым параметрам переходных процессов, ускорениям, мощностям, моментам во всем диапазоне нагрузок. Показатели качества, по которым имеется статистический материал для многих типов поворотных устройств,— К, Ко, АГд, aадекватности модели, но и для выделения допустимой области изменения ее параметров. Модели такого типа могут быть использованы непосредственно для оценки чувствительности рабочих характеристик к изменению некоторых внутренних параметров и выявления выходных параметров, на которых это изменение наиболее четко проявляется. G помощью этих моделей можно рассчитывать нагрузки, действующие на детали механизма, и на этой основе определять допуски на диагностические параметры, выявлять наиболее нагруженные детали  [c.57]

Как уже упоминалось, при расчете вариантов становятся известными нагрузки внутри механизма, его точность, быстродействие, неравномерность движения звеньев при разных значениях V . Тем самым получается область допустимых значений варьируемых параметров No СГ N, а также области дефектных состояний Nj, N2,. . ., С N. Для построения алгоритма диагностирования (определения Nj., А = О, 1, 2,. . . ) нужно установить чувствительность выходных параметров к изменению отдельных vj, В качестве функций цели при этом используются те же критерии, что и при идентификации, либо любые другие функции, рассчитываемые по результатам натурных измерений и моделирования. Оценка чувствительности может производиться, например, по критерию Фишера. В этом случае для каждой из выбранных функций цели Ф (т. е. предполагаемых диагностических параметров) рассчитываются  [c.60]

Определение этих 10 параметров позволило заметно уменьшить число вариантов, рассчитываемых для идентификации модели (4.1), которая проводилась по методике многокритериальной оценки параметров [65]. При этом использовались, кроме указанных в табл. 4.2, результаты еще 4-экспериментальных режимов с различной настройкой ДС и ДТ (т. е. с варьируемыми Aj, Ас, By, Вс). В качестве добавочных критериев близости модели и устройства принимались времена разгона fp, начала торможения и и цикла tn, соответствующие ускорения бр, 8т и Ец и максимальные значения давлений в цикле— шах pi и max р . Определение исходной области варьирования неизвестных параметров проводилось с помощью содержательного анализа качественного влияния отдельных параметров на выходные кривые (Oi Pi (i) и Pz (t) модели. В результате построена модель, довольно точно отражающая динамику работы привода (рис. 4.4). Исследование этой модели позволило определить причины наиболее часто наблюдавшихся дефектов поворотного стола и выявить его-возможные неисправности, не встретившиеся в экспериментально обследованных станках. Соответственно были построены алгоритмы, выбраны диагностические параметры и т. п., что позволило в несколько раз уменьшить простои станков из-за дефектов поворотного стола (см. разд. 8.1.2).  [c.66]

Экспериментальные методы определения критериев качества и диагностических параметров ПР  [c.78]

Значительно снижают технические возможности и сокращают период нормальной эксплуатации неблагоприятные динамические характеристики станков. Например, неправильная отладка моментов переключения фрикционных муфт и их износ приводят не только к увеличению времени холостых ходов, но и к изменению динамических нагрузок. Не всегда соответствует техническим условиям точность исполнения цикла, что вызывает необходимость проверки теоретических циклограмм станков-автоматов кинематическими и динамическими методами. На динамические условия взаимодействия механизмов значительное влияние оказывают скорость вращения РВ и угол поворота шпиндельного блока (одинарная и двойная индексация). При диагностировании технологического оборудования с едиными валами управления выбираются диагностические параметры, несущие наибольшую информацию о работе различных целевых механизмов. Одним из таких параметров является крутящий момент на РВ, на основе которого разработаны алгоритмы и программы диагностирования механизмов подъема, поворота и фиксации шпиндельного блока подачи, упора и зажима материала суппортной группы, а также оценки работы автоматов с технологическими наладками [21, 22]. Сущность способа выявления дефектов механизмов без их разборки с помощью этого параметра заключается в том, что на РВ проверяемого автомата между приводом и кулачками управления устанавливается съемный тензометрический датчик крутящего момента, который через преобразователь соединяется с регистрирующей аппаратурой. Качество изготовления и техническое состояние различных узлов и механизмов, управляемых от одного РВ, оценивается сравнением осциллограмм крутящего момента на РВ проверяемого станка с эталонной, полученных в одном масштабе. Если величина и характер изменения кривой крутящего момента на отдельных участках циклограммы проверяемого станка не соответствуют эталонной осциллограмме, то по типовым динамограммам дефектов и дефектным картам механизмов определяются виды дефектов, причины их возникновения и способы устранения. Для удобства проверки станков в цеховых условиях эталонная осциллограмма наносится на линейку из оргстекла.  [c.105]

Другим диагностическим параметром для проверки станков-автоматов является мощность, потребляемая главным приводным электродвигателем. Однако использование мощности для диагностирования механизмов холостых ходов менее эффективно, так как на осциллограммах отдельные пики, характеризующие изме-  [c.105]

Одним из важных диагностических параметров станков-автоматов является угловая скорость РВ. Запись этого параметра позволяет выделить на осциллограммах крутящего момента и мощности участки рабочего и холостого ходов станка, определить время его разгона, устойчивой работы и торможения, расшифровать нагрузки на этих участках цикла, оценить равномерность вращения РВ, а также стабильность и точность работы муфт, особенно при их переключении.  [c.106]


Выбор диагностических параметров. Этот выбор проводится на основе анализа дефектов механизма, который включает определение  [c.134]

В качесгве критериев используют не только значения диагностических параметров, но и темп их изменения гю времени.  [c.484]

В результате проведенных исследований с подшипниками бумагоделательных машин установлено, что в качестве диагностического параметра может быть эффективно использовано отношение средних квадратических значений виброускорений эталонного и диагностируемого подшипников в ин рматиБной полосе частот, то есть в такой полосе частот сцектра. на которой разница в измеряемых величинах наибольшая.  [c.28]

При такой трактовке понятия диагностического параметра практическая реализация метода вибрационной диагностики сведена, во-первых, к определению информативной полосы частот, во-вторых, к установлению уровсшй виброуокорений эталонных и дефектных подшипников в-третьих, к обоснованию и назначению интервалов диагностирования отдельного подшипника.  [c.28]

Вопросы разработки методики, средств диагностирования, а также опыт разработки диагностических процедур, выбора диагностических параметров, квалиметрического анализа результатов контроля для различных машин-автоматов, промышленных роботов и автоматических линий отражены также в работах. Привлечение результатов этих исследований позволит читателю еш е шире изучить особенности диагностирования оборудования в условиях автоматизированного производства.  [c.5]

При диагностировании станков с ЧПУ применялись квали-метрические методы оценки качества механизмов. Использовались такие диагностические параметры, как ускорение, скорость, перемещение и др. На основании анализа полученных данных и сопоставления их с нормативными значениями параметров оценивалось техническое состояние узлов и механизмов. Изучение возможных дефектов механизмов станков с ЧПУ показывает, что наименее надежными являются устройства автоматической смены инструмента. В станках токарной группы большое распространение получили накопители и револьверные головки с электромеханическим и гидравлическим приводом.  [c.49]

При низкой надежности, контролепригодности или пецрием-лемых быстроходности и точности на основе полученной информации разрабатываются предложения по модернизации механизма. На модели просчитываются возможные варианты улучшения конструкции и проводится их диагностический анализ. Затем как для реальных, так и для проектируемых модернизируемых механизмов составляются рекомендации по наладке, контролю и диагностированию. При этом прежде всего выбираются контрольные и диагностические параметры, т. е. такие, по которым легче оценить состояние механизма и выделить отдельные дефекты. Такими параметрами могут быть осциллограммы скорости, ускорения, давлений и т. п., сигналы о включении и выключении отдельных устройств, а также результаты обработки этих первичных зависимостей показатели качества, коэффициенты разложения в спектр и т. д. При этом учитываются возможности их измерения, выбираются датчики и аппаратура и отрабатываются методы обработки в зависимости от производственных условий — ручные, механизированные, автоматические. На основании данных эксперимента и моделирования получают эталонные величины и допуски для контрольных и диагностических параметров, а также значения (для аналоговых — вид зависимостей) диагностических параметров при характерных дефектах для составления дефектных карт.  [c.100]

Проведенная модернизация полностью подтвердила расчеты время цикла улсеньшилось на 2—5 с, что составляет до 60% Т , забросы давления в полостях гидромотора исчезли, ускорения при торможении и фиксации снизились в 3—5 раз и не превышали допустимых. На рис. 2 в координатах Оа Олц немодер-низированные ПС отмечены кружками. Большинство кружков находится в зонах 1 и 4, что позволяет данную конструкцию отнести к числу надежных, но средних по быстроходности. Модернизация заметно повысила быстроходность указанных ПС, причем если в старой конструкции при дефектном изготовлении ТЗ имеют место повышенные нагрузки в приводе, скачки давления, колебания, удары и увеличение времени цикла в 1,5—2 раза, то у модернизированного привода эти нежелательные явления выражены слабее, и только при грубых дефектах изготовления золотника или неправильной наладке. По материалам исследований выбраны диагностические параметры — угловые скорость планшайбы ш и ускорение а, составлены дефектные карты для обоих вариантов приводов. Столы с гидроприводами других конструкций, обследованные по описываемой методике, на рис. 2 отмечены зачерненными кружками.  [c.104]

Коэффициент неравномерности может служить для сравнения различных вариантов конструкции — для этого рассчитывается устойчивость проектируемого или модернизируемого механизма [5, 6]. Кроме того, 8 — удобный контрольный и диагностический параметр, если накоплен достаточный материал для разработки норм 8 . Для силовых столов с гидромотором и винтовой передачей проведен анализ устойчивости — стол рассматривался как система а) с одной степенью свободы — с подроб-  [c.105]

Приводится общая методика расчетно-экспериментального исследования узлов технологического оборудова 1ИЯ с целью разработки процедур диагностирования. В ходе исследования определяются наиболее вероятные иепсправност устройства и их признаки в выходных параметрах, выбираются контрольные точки и диагностические параметры.  [c.173]

При проверке точностных характеристик поворотно-фикси-рующих устройств в качестве диагностических параметров служат перемещения контролируемых узлов. Разработан динамический способ контроля точности фиксации шпиндельных блоков, который позволяет в короткое время выявить причины, приводящие к неправильной фиксации блока и наметить пути их устранения. Метод может быть использован в производственных условиях для точной доводки механизма фиксации [5]. У новых автоматов на точность установки шпинделей в рабочее положение при индексации шпиндельного блока оказывают влияние погрешности расточки отверстий блока под шпиндели (ошибки по хорде и радиусу), погрешности расположения фиксирующих поверхностей сухарей, несоосность оси центральной трубы и барабана овальность и конусность наружного диаметра барабана, деформация центральной трубы шпиндельного блока (нестабильность положения оси центральной трубы), деформация рычагов механизма фиксации (жесткость и температурные деформации), биение шпинделей. Проведен анализ быстроходности и точности поворот-по-фиксирующих механизмов исследованных автоматов по методике, основанной на сравнении этих характеристик со средними величинами коэффициента быстроходности iiT p для разных угловых погрешностей, полученным по данным о быстроходности поворотных устройств различных заводов и фирм [6]. В табл. 4 приняты следующие обозначения Шср = ijj /( пов + фик)— средняя скорость поворачиваемого узла при повороте и фиксации, с  [c.70]

Приводятся результаты расчетного и экспериментального исследования динамики поворотно-фиксирующих устройств многошпиндельных автоматов, в том числе методами математического моделирования. Обосновывается выбор диагностических параметров и приводятся примеры диагностирования механизмов поворота и фиксации шпиндельных блоков в цеховых условиях при изготовлении и эксплуатации станков. Табл. 4, илл. 4, библ. 6 назв.  [c.94]

В целях более глубокого диагностирования механизмов и узлов используются дополнительные параметры, определяющие положение их звеньев. Такими параметрами могут быть ускорение, скорость и перемещение ведомых звеньев шпиндельного блока и рычагов фиксации, суппортов, ползушек, подачи и зажима материала и др. В этом случае при диагностировании механизмов может быть более полно использован подход, основанный на квалиметрических оценках их качества. Предварительно определяются нормативные и допустимые значения диагностических параметров, характер их изменения при различных состояниях механизмов и разных моментах инерции, массах и скоростях перемещаемых узлов. Наличие корреляционной связи между диагностическими параметрами и износом механизмов позволяет использовать их при прогнозировании состояния и работоспособности TanifoB-aBTOMaTOB.  [c.106]



Смотреть страницы где упоминается термин Диагностический параметр 22, 79 (онр : [c.350]    [c.22]    [c.26]    [c.30]    [c.30]    [c.32]    [c.65]    [c.57]    [c.42]    [c.70]    [c.134]    [c.352]   
Техническая эксплуатация автомобилей Учебник для вузов (1991) -- [ c.0 ]



ПОИСК



Взаимосвязь диагностических параметров со структурными

Диагностические параметры и модели

Митрофанов А.В., Нургалиев Д.М., Пастухов С.В., Павловский Б.Р. (ДП Оренбурггазпром, ВНИИНЕФТЕМАШ ТЕХДИАГНОСТИКА ) ОПЫТ КОМПЛЕКСНОЙ ЭКСПЕРТИЗЫ ДИАГНОСТИЧЕСКИХ ПРОЕКТОВ, ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ И ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТОВ ДП ОРЕНБУРГГАЗПРОМ

Однозначность диагностического параметра

Однозначность диагностического параметра определение

Определение предельных значений диагностических параметров

Параметры диагностические - Определение при моделировани

Параметры, отображаемые диагностическим прибором

Построение модели изменения диагностического параметра

Стабильность диагностического параметра

Стабильность диагностического параметра определение

Статистические решения для одного диагностического параметра

Типовые значения параметров, контролируемых диагностическим прибором

Чувствительность диагностического параметра: определение

Экспериментальные методы определения критериев качества и диагностических параметров ПР



© 2025 Mash-xxl.info Реклама на сайте