Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент полезного действия кулачкового механизма

Величину т) называют мгновенным коэффициентом полезного действия кулачкового механизма.  [c.181]

Как следует из равенства (3.108), значение мгновенного коэффициента полезного действия кулачкового механизма уменьшается при увеличении угла давления а.  [c.335]

Указав на положительные стороны книги Шаумяна (своевременность тезиса о борьбе за сокращение потерь времени, способствующей эффективному использованию оборудования и являющейся одной из задач социалистического хозяйства постановка вопроса о необходимости пересмотра теоретических основ управления стойкостью режущего инструмента и скорости резания и пр.), Ученый совет остановился и на ее недостатках. Например, Шаумян не разработал в ней методику технологических нормативов и экономических обоснований целесообразности варианта конструкций автоматических машин с учетом всех условий их эксплуатации. Книга не исчерпывает всех вопросов теории проектирования автоматов. В книге недостаточно полно раскрыта прогрессивная роль электро-и гидроавтоматики и т. д. В то же время Ученый совет МВТУ не согласился с оценкой книги Шаумяна, данной специалистами ЭНИМСа. В частности, совет подчеркнул, что принцип оценки производительности рабочих машин, положенный Шаумяном в основу рассматриваемых в книге вопросов, является в своей основе общепринятым. Что касается материала, посвященного влиянию угла давления на коэффициент полезного действия кулачкового механизма, то, по мнению совета, он является новым и впервые освещается Шаумяном.  [c.59]


КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КУЛАЧКОВОГО МЕХАНИЗМА  [c.480]

Из равенства (26.62) следует, что коэффициент полезного действия уменьшается с увеличением угла давления f). Кулачковый механизм может заклиниться, если сила F21 — р2 os д (рис. 26.18) будет F21 Fw. Заклинивание произойдет, если коэффициент  [c.529]

Из равенства (26.66) следует, что при выбранном законе движения 2 — 2 ((р,) и размере е габариты кулачка определяются радиусом Ro окружности минимального радиуса-вектора кулачка. Увеличивая o, мы получаем меньшие углы давления но большие габариты кулачкового механизма. Обратно, если уменьшить Ro, то возрастают углы давления О и уменьшается коэффициент полезного действия механизма. Если в механизме (рис. 26.18) ось движения толкателя проходит через ось вращения кулачка и е = О, то равенство (26.66) имеет вид  [c.531]

Решение задач метрического синтеза кулачкового механизма должно выполняться на основе учета механических показателей или его качественных критериев, ограничивающих условия, и критериев высшей пары — профиля кулачка. К числу первых относятся угол давления у коэффициент полезного действия механизма т] коэффициент возрастания усилия Н коэффициент динамичности коэффициент прочности или жесткости элементов механизма а коэффициент потерь от трения в кинематических парах х степень удаления механизма от зоны заклинивания Q габарит или компактность механизма Г.  [c.113]

Коэффициент полезного действия. При определении мгновенного к. п. д. кулачковых механизмов удобно пользоваться отношением соответствующих мощностей (см. 21). Мощность вредных сопротивлений Мв. с кулачкового механизма  [c.334]

Кулачковые механизмы могут быть центральными и смещенными. Центральным называется такой кулачковый механизм, у которого линия перемещения острия или центра ролика толкателя пересекает ось вращения кулачка О (см. рис. 5.1). Если эта линия перемещения толкателя проходит на некотором расстоянии е от оси вращения кулачка (рис. 5.2, в и д), то механизм называется смещенным. Смещенный кулачковый механизм при одинаковых с центральным механизмом размерах звеньев дает возможность повысить коэффициент полезного действия, а также изменить скорость движения толкателя при его удалении или сближении относительно оси вращения кулачка.  [c.118]

Надежность и долговечность кулачковых механизмов определяется долговечностью элементов высшей пары, т. е. их поверхностной прочностью. Поэтому при проектировании этих механизмов наряду с кинематическими требованиями, предъявляемыми к механизму, необходимо учитывать законы передачи сил с тем, чтобы получить наиболее рациональную конструкцию механизма, работающую с наиболее высоким коэффициентом полезного действия.  [c.137]


Под кулачковым механизмом понимают совокупность трех элементов стойки — базы механизма, ведущего звена — кулачка и ведомого звена— толкателя или коромысла. Кулачок и толкатель, соприкасаясь, образуют высшую кинематическую пару. Кулачок задает движение толкателю по определенному закону. Кулачок большей частью имеет непрерывное вращательное движение. С целью замены трения скольжения между кулачком и толкателем на трение качения толкатель снабжают роликом. При этом коэффициент полезного действия механизма повышается, а при соответствующем подборе материала и размеров кулачка и ролика снижается их износ.  [c.112]

К исходным данным для проектирования кулачковых механизмов относятся также выбор основных размеров их звеньев. Здесь сначала надо отметить желательность получения наименьших габаритов механизма, достаточно высокого его коэффициента полезного действия, установление размеров направляющих для толкателей, определение диаметра ролика или размеров плоской тарелки толкателя и коромысла и т. д. Основные конструктивные размеры звеньев кулачковых механизмов также связаны и с расчетом на прочность этих звеньев, износом профилей элементов высшей кинематической пары, надежности работы механизма и т. д. Как всегда, при конкретном проектировании трудно спроектировать кулачковый механизм, который удовлетворял бы всем требуемым показателям в одинаковой степени. Поэтому в процессе проектирования конструктор обычно просчитывает несколько вариантов схем механизма и выбирает из них оптимальный вариант или стремится, учитывая технологическое задание, удовлетворить в той ала иной степени основным кинематическим,  [c.688]

Основные размеры кулачковых механизмов определяются, ИСХОДЯ из кинематических, динамических и конструктивных условий. Кинематические условия определяются тем, что механизм должен воспроизводить заданный закон движения. Динамические условия весьма многообразны, но основные условия заключаются в том, чтобы механизм имел достаточно высокий коэффициент полезного действия и чтобы не происходило заклинивания механизма. Конструктивные требования определяются из условий достаточной прочности отдельных деталей механизма, сопротивляемости износу соприкасающихся  [c.702]

Из равенства (27.70) следует, что коэффициент полезного действия уменьшается с увеличением угла давления а. Кулачковый механизм может заклиниться, если сила = os а (рис. 719) будет Заклинивание произойдет, если коэффициент полезного действия т] будет равен нулю. В таком случае из равенства (27.70) получим  [c.704]

К исходным данным для проектирования кулачковых механизмов относится также выбор основных размеров их звеньев. Здесь сначала надо отметить желательность получения наименьших габаритов механизма, достаточно высокого его коэффициента полезного действия, установление размеров и направляющих для толкателей, определение диаметра ролика или размеров плоской тарелки толкателя и коромысла и т. д. Основные конструктивные размеры звеньев кулачковых механизмов также связаны и с расчетом на прочность этих звеньев, износом профилей элементов высшей кинематической пары, надежности работы механизма и т. д.  [c.513]

ВО вращательное движение шпинделя с помощью кривошипно-шатунного механизма или кулисных и кулачковых механизмов и пневмораспределителя. Несмотря на достаточно высокий коэффициент полезного действия, поршневые пневматические двигатели имеют ограниченное применение в ручных машинах из-за большой массы и габаритов и используются главным образом для работ, при которых требуются значительная мощность и пусковой крутящий момент при небольшой частоте вращения.  [c.350]

Пусть дан центральный кулачковый механизм (рис. 7.3). Рассмотрим силы, действующие на его звенья — движущая сила, действующая со стороны кулачка на толкатель и нормальная профилю кулачка в точке касания А кулачка и толкателя f — сила полезного сопротивления F i, Рпг — силы, возникающие в кинематической паре толкатель — направляющая f == f + Рщ) — сила трения толкателя в направляющей (/ — коэффициент трения скольжения) F = —т<2т — сила инерции толкателя т — масса толкателя  [c.70]


При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.  [c.53]

Большое развитие в СССР получили за последние 20 лет методы синтезаг кулачковых механизмов, нашедших широкое применение в двигателях, станках, машинах текстильной и легкой промышленности, в пищевых и сельскохозяйственных машинах и т. д. В основу их были положены методы кинематической геометрии с соответствующей аналитической интерпретацией. Важное место в задачах синтеза кулачковых механизмов занимали вопросы изучения характеристик различных законов движения ведомых звеньев, коэффициента полезного действия механизмов, закон передачи сил и т. д.  [c.28]

В поршневых пневматических двигателях возвратно-поступательное движение рабочих поршней преобразуется во вращательное движение шпинделя с помощью кривошипно-шатунного механизма или кулисных и кулачковых механизмов и золотникового воздухораспре-деления. Несмотря на достаточно высокий коэффициент полезного действия, поршневые пневматические двигатели имеют ограниченное применение в ручных машинах из-за большой массы и габаритов и используются главным образом для работ, где требуются значительная мощность и пусковой крутящий момент при небольшой частоте вращения.  [c.65]


Смотреть страницы где упоминается термин Коэффициент полезного действия кулачкового механизма : [c.293]   
Смотреть главы в:

Теория механизмов и машин  -> Коэффициент полезного действия кулачкового механизма



ПОИСК



ATM полезности

Коэффициент полезного действия

Коэффициент полезного действия Определение кулачкового механизма

Коэффициент полезного действия механизма

Кулачковый

Механизм кулачковый

Ц икл коэффициент полезного

см полезного действия механизмов



© 2025 Mash-xxl.info Реклама на сайте