Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Превращение веществ

Вообще температура кипения возрастает с увеличением давления. Поскольку температура кипения и давление возрастают, то плотность пара увеличивается, а плотность жидкой фазы уменьшается до тех пор, пока при определенных температуре и давлении плотность и другие свойства этих двух фаз не станут идентичными. Эти значения температуры и давления определяют критическую точку. По мере приближения к критической точке свойства двух фаз становятся более близкими и энергия, требуемая для превращения вещества из одной фазы в другую, уменьшается. В критической точке скрытая теплота парообразования становится равной нулю. При температуре выше критической невозможно получить более одной фазы при любом давлении.  [c.60]


Газообразное тело в состоянии, близком к кипящей жидкости, называется паром, а процесс превращения вещества из жидкого состояния в парообразное называется парообразованием. Испарением называется парообразование, которое происходит всегда прк любой температуре с поверхности жидкости. Процесс испарения заключается в том, что отдельные молекулы с большими скоростями преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастаете увеличением температуры жидкости.  [c.172]

Уравнения (11-10) и (11-11) называют уравнениями Клапейрона — Клаузиуса. Они устанавливают связь между термическими и калорическими величинами при фазовых превращениях вещества.  [c.180]

Соотношения (5.32), (5.35) служат обоснованием основного закона термохимии — закона Гесса, согласно которому химические превращения веществ, происходящие при постоянстве всех рабочих координат либо при постоянстве давления и всех рабочих координат, исключая объем, сопровождаются теплотой, количество которой зависит только от исходного и конечного состояний системы и не зависит от того, какие промежуточные вещества образуются в ходе таких превращений. Значения Qv и Qp для стандартных химических процессов, таких как реакции образования соединений из простых веществ, реакции смещения компонентов с образованием раствора и другие, находят экспериментально. Они служат в химической термодинамике необходимой базой для расчетов других процессов и свойств.  [c.48]

Чтобы ввести переменные, выражающие химический состав, можно рассмотреть химически неравновесную систему с заторможенными превращениями веществ. В этом случае (см. 4) в числе аргументов термодинамических функций появятся дополнительные внутренние переменные. Вместо (6.2), например, можно тогда рассматривать функцию S=S U, v, п, п) условно равновесной системы. Внешние переменные п в этом выраже-яни целесообразно ради общности заменить на внутренние п, т. е. иметь дело с зависимостью S(U, v, n).  [c.65]

Рассмотренные выше примеры касались однородных закрытых систем, и поскольку переменные химического состава в них не использовались, то полученные выводы справедливы либо при равновесных химических превращениях веществ в системе, либо при полном отсутствии таковых. Усложнения, появляющиеся при анализе открытых систем или систем с неравновесным химическим составом, вызваны прежде всего увеличением числа аргументов характеристических функций. Можно и в этом случае попытаться применить рассмотренную последовательность получения термодинамических характеристик, т. е. по-прежнему изучать зависимости Ср(Т), V T, Р) и т. п., но при определенных, фиксированных химических составах. Такой путь был бы, однако, неоправданно трудоемким, если в начале его не ориентироваться на использование уравнений Гиббса—Дюгема. Для применения последних надо знать прежде всего зависимость свойств от состава фазы, и определение этих зависимостей при параметрах 7, Р составляет основную задачу экспериментальной термодинамики растворов.  [c.95]


В предшествующих разделах этой главы внутреннее строение фаз не рассматривалось и в качестве переменных всегда использовались количества или концентрации компонентов фаз. Это означает, что через мембрану, разделяющую фазы, переносились те же структурные единицы, которые являлись составляющими фаз. Чтобы отказаться от этого ограничения, необходимо учесть химические превращения веществ на поверхности мембраны или в объемах фаз. Будем считать давления и температуры фаз одинаковыми и известными, а в качестве критерия равновесия используем условие (11.33) минимальности энергии Гиббса системы. Способ вывода основных соотношений виден из следующего конкретного примера.  [c.140]

В приведенных выше выводах не учитывалась возможность химических превращений веществ. Нетрудно проследить, как изменятся условия равновесия в силовом поле, если отказаться от такого ограничения. При наличии химических реакций изменится третье равенство (18.4), так как условие сохранения годится в этом случае только для компонентов, т. е.  [c.159]

Интересующий процесс может происходить с изменением как температуры, так и давления. Например, адиабатическое расширение газа, сопровождающееся химическими превращениями веществ.. Энтальпия системы в таком процессе также меняется. Если, однако, расширение можно считать равновесным, то должна сохраняться энтропия системы и ее можно определить по энтропиям исходных веществ, т. е.  [c.173]

Размерность задачи сократится еще более, если в системе с химическими превращениями веществ переменными выбраны не количества составляющих, а степени протекания химических реакций. В этом случае возникает задача нахождения набора линейно независимых реакций только такие реакции являются химически различающимися процессами. При выбранных компонентах в качестве независимых реакций можно принять реакции (16.25) образования (с—с)-составляющих из с компонентов. По определению понятия компонент такие реакции всегда возможны и являются линейно независимыми. В химической термодинамике реакции образования приняты в качестве стандартной формы представления химических превращений веществ любые такие превращения выражаются как линейная комбинация реакций образования участвующих в них веществ (см. (16.26)).  [c.178]

Если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ, то работа электрического поля приводит только к нагреванию проводника. При этом работа электрического тока  [c.149]

Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей массы Солнца, в которых имеет место основная последовательность ядерных превращений. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 ядра водорода ядро гелия выделенная энергия = 10 кВт-ч на фунт (2,2 X X 10 кВт-ч/кг) превращенного вещества. Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей <a href="/info/427952">массы Солнца</a>, в которых имеет место основная последовательность <a href="/info/418362">ядерных превращений</a>. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 ядра водорода ядро гелия выделенная энергия = 10 кВт-ч на фунт (2,2 X X 10 кВт-ч/кг) превращенного вещества.
Следует различать первичные и вторичные фотохимические реакции. Первичные фотохимические реакции всегда являются эндотермическими, т. е. происходящими при поглощении. энергии. Во всех вторичных реакциях происходят превращения, обусловленные химическими преобразованиями, т. е. изменением конфигурации молекул и, следовательно, изменением внутренней энергии системы. Для первичных фотохимических реакций Эйнштейн (1912) сформулировал закон квантовой эквивалентности— основной закон фотохимии. Согласно этому закону каждый поглощенный квант света вызывает одну элементарную реакцию, т. е. способен возбудить только одну молекулу. Элементарная реакция может быть либо химической, приводящей к превращению вещества, либо чисто физической, состоящей в возбуждении молекулы и обратном испускании поглощенной энергии или в пре-  [c.189]


Исходя из квантовых представлений, легко понять, что свет может вызвать такие химические превращения вещества, которые в обычных условиях требовали бы весьма высокой температуры. Действительно, комнатной температуре 290 К отвечает энергия поступательного движения молекул, равная Зй7/2 0,4 э15 = 6,4- 10 °Дж, в то время как энергия фотона зеленой области спектра (v=6 10 Гц) равна e = hv 2,5 эВ = 4 Дж. Таким образом, поглощение фотона видимого излучения эквивалентно нагреванию до многих тысяч градусов. Понятно также, что чем короче длина волны излучения, тем оно должно быть химически более активным. Если для первичного превращения одной молекулы (например, диссоциации) нужна энергия О, то, чтобы это превращение произошло, необходимо, чтобы энергия одного фотона была не меньше О, т. е. Следовательно,  [c.190]

Вследствие эквивалентности массы и энергии наряду с превращением вещества в излучение возможен и обратный процесс превращения излучения в вещество. Определить температуру, при которой возникает пара электрон—позитрон в равновесной системе электронный газ—излучение.  [c.222]

При изменении внешних воздействий на равновесную гетерогенную систему вещество из одной фазы может переходить в другую, например из жидкости в пар, из одной кристаллической модификации в другую, из нормального проводника в сверхпроводник, из ферромагнетика в парамагнетик и т. д. Такие превращения вещества из одной фазы в другую при изменении внешних условий называются фазовыми переходами.  [c.233]

Заметим, что мы использовали основное уравнение равновесной термодинамики для всех состояний (метастабильных и нестабильных), поскольку по условию для них принимается справедливым уравнение Ван-дер-Ваальса. Заметим также, что основное уравнение термодинамики (I) нельзя применять к циклу аЬса, так как при переходе с участка Ьс на прямолинейный участок са в точке с происходит необратимый прог[есс превращения вещества из однофазного в двухфазное состояние и вместо уравнения (1) надо пользоваться основным неравенством термодинамики.  [c.307]

Фазовые превращения вещества (кипение, испарение, конденсация, сублимация) сопровождаются существенным изменением условий теплообмена около поверхности. Переход теплоносителя из одного агрегатного состояния в другое влияет на механизм и интенсивность теплообмена.  [c.405]

Наиболее простой вид имеет математическая модель химического реактора периодического действия. Будем считать, что в реакторе идет единственная реакция превращения вещества X в вещество Y по схеме aX->Y, где а — стехиометрический коэффициент. Предположим, что порядок реакции равен п (часто полагают а = п, см. раздел 1.4.). При периодическом проведении процесса исходный материал с заданной концентрацией с о вещества X загружается в момент времени / = О и находится в реакторе в течение определенного времени до достижения некоторой конечной концентрации вещества X. Уравнение, описывающее процесс изменения концентрации в объеме реактора имеет вид  [c.244]

Рассмотрим теперь проточный химический реактор идеального перемешивания. Будем считать, что в реакторе протекает реакция превращения вещества X в вещество Y по схеме X->Y. В дальнейшем будем исследовать изменение во времени только концентрации t) вещества X, поэтому для упрощения записи положим i t) = t). При равенстве входной и выходной объемной скорости потока изменение с течением времени концентрации t) вещества X в реакторе описывается уравнением  [c.246]

Так как константа k в уравнении (5.4.46) определяет скорость реакции, т. е. скорость превращения вещества X, вполне естественно, что эта величина имеет смысл только в тех точках, где с х, 1)Ф  [c.254]

Ясно, что площадь под кривой с.р= Т), т. е. площадь А ЬС ейА соответствует тому количеству теплоты, которую надо затратить в изобарном процессе для превращения вещества из состояния А в состояние С.  [c.52]

В химическом процессе выделяющееся количество теплоты пропорционально количеству прореагировавшего вещества. Степень превращения вещества может быть выражена соотношением  [c.158]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. В рамках химической термодинамики изучаются физикохимические превращения вещества, определяются тепловые эффекты реакций, рассчитывается химическое равновесие систем. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и является (вместе с теорией теплообмена) теоретическим фундаментом теплотехники. На ее основе осуществляют расчет и проектирование всех тепловых двигателей — паровых и газовых турбин, реактивных и ракетных двигателей, двигателей внутреннего сгорания, а также всевозможного технологического оборудования — компрессорных мащин, сушильных и холодильных установок и т. д.  [c.6]

Процесс парообразования. Основные понятия и определения. Рассмотрим процесс получения пара. Для этого 1 кг воды при температуре О С поместим в цилиндр с подвижным поршнем. Приложим к, поршню извне некоторую постоянную силу Р. Тогда при площади поршня Р давление будет постоянным и равным р=Р/Р. Будем изображать процесс парообразования, т. е. процесс превращения вещества из жидкого состояния в газообразное в р, о-диаграмме (рис. 4.6).  [c.36]

В случае нестационарных процессов такое равенство может приближенно выполняться, когда речь идет об электрохимических процессах, связанных с доставкой реагента к поверхности, реакцией его на поверхности и отводом продуктов реакции в раствор. Если вызванное нестационарностью процесса накопление продуктов реакции или реагирующего вещества у поверхности будет незначительным по сравнению со скоростью превращений вещества, то скорости всех последовательных стадий могут считаться равными.  [c.206]


Уравнение Клапейрона — Клаузиуса применимо ко всяким изменениям агрегатного состояния химически однородных неществ к плавлению и испарению твердых тел, превращению веществ из одного твердого состояния в другое, к образованию и плавлению кристаллов, к определению изменения удельного объема в процессе парообразования, к определению полной теплоты парообразюванля.  [c.180]

Энергии активации реакций 2 и 3 меньше, чем реакции 1, поэтому скорость превращения веществ А и В в АВ будет значительно выше. Каталитирующее действие в данном случае будет зависеть от концентрации катализатора, так как он по существу служит реагентом.  [c.298]

Таким образом, термодинамический эффект, вызванный изменениями количеств веществ в системе, можно вырааить тремя способами. Вонпервых, его можно представить как сумму эффектов от каждого из компонентов системы. Независимыми переменными в этом случае служат количества (или массы) компонентов, и вклад каждого из них о внутреннюю энергию системы записывается в виде ifdrtf. Этот способ описания пригоден для процессов в открытых системах. Вопрос о химическом равновесии внутри системы при нем остается невыясненным. Так функции и(S, V, п) или U(T, V, п) могут относиться как к химически равновесной системе, так и к системе, в которой нет химических превращений веществ. Обе эти возможности должны указываться заранее при формулировке задачи. Последнее замечание относится и к описанию процессов в закрытых системах, у которых все внешние переменные п фиксированы и поэтому обычно не включаются в набор аргументов термодинамических функций. Например, уравнение состояния (2.1) в виде Р = Р(Т, V) справедливо как для химически равновесной смеси веществ, так и для гомогенной системы без химических превращений. Общие выражения (2.2) —(2.7) для частных производных одинаковы в обоих случаях, о численные значения термических коэффициентов av, Pv и других свойств при наличии химических реакций и без них могут существенно различаться. Наглядный пример этого — уравнения (5.30), (5.31).  [c.69]

Массообменный режим связан с химическим превращением вещества и характерен для печей теплогенераторов. В печах-теплогенераторах зоны технологического процесса и теплогенерации совмещены. Пример печи-теплогенератора — печь для обжига в кипящем слое .  [c.257]

Электротермия тесно переплетается с электрохимическими способами превращений веществ и материалов, что необычайно расширяет возможности электрификации технологических операций (например, э.тектролиз огненножидких расплавов, анодно-механическая обработка металлов и т. д.).  [c.117]

Глубокую оценку значения электрической энергии д.чя технологии дал выдающийся советский электроэнергетик Г. М. Кржижановский еще в период разработки плана ГОЭЛРО. Он подчеркнул, что на грани физических и механических процессов электротехника не останавливается. Практическая электрохимия и электрометаллургия родились каких-нибудь 20 лет тому назад. Ныне это уже громадные научные области, уже двигатели и носители революционных переворотов в области нужных для че.ловечества превращений вещества [19]. И действительно, благодаря введению электротехнологии в настоящее время удается получить в массовом масштабе весьма редкие в прошлом элементы, новые сочетания их в виде специальных сплавов и многие синтетические материалы.  [c.117]


Смотреть страницы где упоминается термин Превращение веществ : [c.17]    [c.11]    [c.17]    [c.34]    [c.65]    [c.67]    [c.68]    [c.99]    [c.229]    [c.157]    [c.212]    [c.251]    [c.74]    [c.179]    [c.118]    [c.119]   
Смотреть главы в:

Прогноз качества воды водоёмов-приемников сточных вод  -> Превращение веществ



ПОИСК



Превращение



© 2025 Mash-xxl.info Реклама на сайте