Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Навье на поверхности

Помимо упомянутого условия в виде аппроксимации в граничных узлах уравнения импульса, не касательного к твердой стенке, возможны следующие варианты аппроксимации в этих узлах исходных уравнений или их следствий аппроксимация уравнения неразрывности аппроксимация проекции обеих частей векторного уравнения Навье-Стокса на направление одной из характеристик гиперболической части этих уравнений, приходящей на поверхность и не касательной к ней.  [c.153]


Граничные условия для уравнений Навье—Стокса также могут быть весьма разнообразными. Например, в задаче об обтекании вязкой жидкостью или газом поверхности произвольной формы обычно задаются граничные условия первого рода, причем на границе необходимо задавать значения компонент вектора скорости, плотность и давление.  [c.11]

Произвол в определении функции У ф) позволяет выбрать ее так, что вектор скорости обращается в нуль, например, на двух осесимметричных поверхностях тока. Возникающий поток прилипает к этим поверхностям. Однако подстановка равенств (П2.1) в уравнения Навье— Стокса показывает, что они удовлетворяются только при а = 0. В этом случае гиперболы вырождаются в прямые г = Ь при  [c.231]

При таком рассмотрении остается, конечно, в стороне вопрос о влиянии, которое может иметь на устойчивость пограничного слоя кривизна обтекаемой поверхности Имеется также и определенная непоследовательность, связанная с делаемыми пренебрежениями. Дело в том, что единственными плоско-параллельными течениями (с профилем скорости, зависящим только от одной координаты), удовлетворяющими уравнению Навье — Стокса, являются течения с линейным (17,1) и параболическим (17,4) профилями (в то время как уравнение Эйлера удовлетворяется плоско-параллельным течением с произвольным профилем). Поэтому рассматриваемое в теории устойчивости пограничного слоя основное течение не является, строго говоря, решением уравнений движения.  [c.238]

Формально такое явление наблюдается при рассмотрении турбулентного течения. Однако существенное отличие состоит в том, что пульсационная составляющая распределения скорости определяется периодической структурой поверхности раздела волновой пленки жидкости, определяемой из решения уравнения Навье-Стокса, а следовательно, не носит характер случайной величины, как это имеет место при турбулентном течении. Такой характер распределения скорости, представленный формулой (1.3.12), вносит существенные коррективы в природу уравнения конвективной диффузии для волновой пленки. На самом деле, если два первых члена уравнения (1.3.8) по форме напоминают уравнение переноса вещества в гладкой жидкой пленке (при а => 0), то его третий член ответствен за волновую природу массообмена. Этот член но форме напоминает добавку к потоку вещества, обусловленную турбулентным переносом. Но как и для случая распределения скорости (1.3.12), эта добавка носит периодический, а не случайный как это имеет место при турбулентном потоке вещества.  [c.22]


Формула (37) получена из точного решения уравнения Навье — Стокса для медленного течения несжимаемой жидкости, когда инерционными членами, стоящими в левой части уравнения, можно пренебречь граничным условием является равенство нулю скорости течения на поверхности сферы.  [c.146]

Возмущенные значения скорости и давления также пропорциональны множителю Q p ikx - /со О- Описание возмущенного движения осуществляется на основе полных уравнений Навье—Стокса при сохранении во всех соотношениях тех членов, в которые возмущенные величины входят лишь в первой степени (отсюда название линейная теория ). С точностью до линейных по возмущениям величин записываются и граничные условия на стенке и свободной поверхности пленки. Последние учитывают действие силы поверхностного натяжения (из-за искривления поверхности). Предполагается также, что трение на свободной поверхности пленки равно нулю. Линейная теория описывает полностью (с точностью до абсолютного значения амплитуд возмущенных величин) возникающее движение и позволяет установить значение частот со при известных волновых числах к и остальных параметрах задачи. Исследование этой зависимости и составляет центральную задачу линейной теории устойчивости.  [c.166]

Рассматриваемый тип движения газовых пузырьков в жидкости соответствует области 2 рис. 5.6. В этой области строгий анализ требует, вообще говоря, решения полного уравнения Навье—Стокса (1.4г) или (1.4д). Однако интерпретация границы сферического пузырька как свободной поверхности жидкости с нулевым касательным напряжением на ней позволяет использовать следующий приближенный подход. При обтекании газового пузырька чистой (без поверхностно-активных веществ) жидкостью, как уже отмечалось, практически отсутствует зона отрыва потока от поверхности раздела фаз (в отличие от обтекания твердой сферы, которое при Re > 1 сопровождается отрывом потока практически сразу за ее миделе-вым сечением). В силу этого вихревое движение локализуется в весьма тонком пограничном слое на поверхности обтекаемого пузырька и в следе за пузырьком. Во всей остальной области течение может рассматриваться как потенциальное. Толщина пограничного слоя 5 на границе пузырька радиуса а по порядку величины должна  [c.216]

В большинстве практических случаев граничные условия для уравнения энергии (22) или (23) заранее неизвестны, поскольку существует тепловое взаимодействие между потоком жидкости и контактирующей с ним поверхностью рассматриваемого тела (элементом конструкции теплообменного аппарата). В общем случае граничные условия на поверхности рассматриваемого тела определяются не только гидродинамическими и тепловыми свойствами потока жидкости, но и характером процесса теплопроводности в самом теле. Поэтому к рассматриваемым выше уравнениям Навье-Стокса для потока жидкости необходимо добавить уравнение теплопроводности для тела  [c.21]

Возникновение вихревых течений в колеблющихся потоках формально учтено нелинейными конвективными членами в уравнениях Навье-Стокса, значение которых может быть вычислено посредством определения функции F (х, у) в уравнении (197). Как следует из выражения (198), возникновение вихревых течений в значительной степени зависит от градиента скорости внешнего потока. Градиент скорости внешнего потока может быть обусловлен стоячей волной, например резонансными колебаниями или обтеканием криволинейных поверхностей шара, цилиндра и т. д. Влияние градиента скорости на структуру колеблющегося пограничного слоя определим методом последовательных приближений. В этом случае для анализа удобно внести функции тока для пульсационных составляющих  [c.102]


Первоначальный образ теории относился к случаю плавного обтекания потоком какого-либо твердого тела при условии, что число Re стремится к бесконечности или практически достаточно велико. При этом согласно (4-30) в динамических уравнениях Навье — Стокса можно опустить члены, отражающие действие сил вязкости, и трактовать течение как потенциальное. Порядок дифференциальных уравнений понижается, и математические трудности решения облегчаются. Однако получаемый результат в кинематическом отношении оказывается верным отнюдь не во всей области течения. В непосредственной близости от омываемой поверхности скорость течения, как показывает опыт, чрезвычайно быстро падает до нуля, тогда как потенциальное течение лишено этого свойства. Не воспроизводится также действительная картина течения в кормовой части тел, помещенных в поток, поскольку в условиях потенциальности нет причин для отрыва струй от стенки. В динамическом отношении результат получается и вовсе неприемлемым поток на самом деле испытывает сопротивление со стороны внесенного в него тела, при полном же отсутствии трения такой эффект не возникает.  [c.104]

Выше при рассмотрении пленочной конденсации формулировка уравнений, описывающих движение и теплообмен в двухфазной системе, не вызывала принципиальных затруднений, поскольку обе фазы образовывали непрерывные потоки с одной отчетливо выраженной поверхностью раздела. Кипение представляет пример такого процесса, в котором компоненты потока могут быть в чрезвычайно сильной степени раздроблены на пузыри, капли, пленки. Для любого дифференциального объема каждого из таких конечных дискретных элементов системы безусловно справедливы рассматривавшиеся нами ранее обш,ие дифференциальные уравнения движения и теплопроводности. Точно так же для любой дифференциальной площадки на поверхностях раздела фаз справедливы рассмотренные ранее условия теплового и механического взаимодействия. Однако вследствие весьма большого числа дискретных элементов системы, их непрерывного возникновения, роста и деформации в процессе движения и теплообмена, весь такой двухфазный поток в целом должен характеризоваться некоторыми специальными вероятностными законами системы многих неустойчивых элементов. Здесь в известной степени можно провести аналогию с турбулентным течением однородной жидкости, в котором для каждого дифференциального элемента справедливо уравнение Навье-Стокса, а весь поток в целом подчиняется специальным (еще плохо известным) статистическим законам турбулентного течения.  [c.342]

Опыт показывает, что в потоках вязких жидкостей или газов около поверхности твердого тела или у границы двух потоков жидкости, движущихся с разными скоростями, действие сил вязкости в разных областях течения проявляется неодинаково. Оно проявляется заметно там, где возникают большие поперечные градиенты скорости и, как следствие, касательные напряжения велики. По мере увеличения расстояния от стенки действие сил вязкости ослабевает и становится исчезающе малым на сравнительно небольшом удалении, В обычных условиях течения скорость частиц жидкости относительно обтекаемой поверхности и на самой поверхности равна нулю с увеличением расстояния от стенки она быстро увеличивается, приближаясь к скорости внешнего потока О), где поперечные градиенты скорости практически равны нулю, а касательные напряжения, возникающие вследствие трения, пренебрежимо малы. Течение в области, удаленной от поверхности, можно считать совпадающим с потенциальным течением идеальной жидкости и применять к нему закономерности теории идеальной жидкости. Эту область называют потенциальным или внешним потоком. Тонкий слой жидкости, прилегающий к поверхности обтекаемого тела и заторможенный вследствие трения, называют динамическим пограничным слоем. В пределах пограничного слоя касательное напряжение от трения очень велико даже при малой вязкости жидкости, поскольку очень велик градиент скорости в направлении, перпендикулярном поверхности тела. Во внешнем потоке инерционные силы преобладают над силами вязкости, поэтому уравнения Навье—Стокса переходят в уравнения движения идеальной жидкости.  [c.18]

Однако на сегодня один вопрос остается открытым не доказана строго правомерность предельного перехода от дифференциальных уравнений Навье — Стокса к уравнениям пограничного слоя. Это же, конечно, относится и к образованию пограничного слоя при больших числах Рейнольдса на поверхности тела, обтекаемого свободным потоком. Однако в некоторых даже более сложных случаях образования пограничного слоя может и не наступить.  [c.10]

Задачи вязкого многофазного течения (жидкости, газы, твердые частицы). Этот класс содержит задачи движения запыленных потоков, а также движения потоков ири наличии кипения и конденсации. Для решения задач данного класса используются уравнения в приближении пограничного слоя или полные уравнения Навье — Стокса. Введение большого числа поверхностей разрыва фаз требует добавления к численным методам, разработанным для сплошной среды, статистических методов определения параметров потоков [35]. Численные решения задач движения вязкой многофазной жидкости получены только на основе уравнений пограничного слоя с введением влияния второй фазы на  [c.187]

Два физических явления называют подобными, если величины или параметры одного явления могут быть получены по величинам или параметрам другого, взятым в сходственных пространственно временных точках, путем умножения на коэффициенты, постоянные для всех точек. Рассмотрим движение однородной несжимаемой жидкости с постоянной плотностью и коэффициентом вязкости. Так как в гидропередачах отсутствуют свободные поверхности жидкости, движение определяется лишь динамической составляющей давления. Распределение гидростатических давлений не сказывается на движении жидкости. В таком случае, уравнение Навье — Стокса, характеризующее гидродинамические процессы, и уравнение неразрывности имеют вид  [c.12]


В отличие от уравнений Эйлера уравнения Навье — Стокса (2.50) описывают движение не идеальной, а реальной вязкой жидкости, характер движения которой наиболее заметно меняется вблизи обтекаемых твердых поверхностей. Теперь на твердых стенках, находящихся в покое, не только нормальные, но и касательные составляющие скорости потока с должны быть равны нулю. Условие нулевой скорости жидкости на стенках канала или поверхностях обтекаемых тел вытекает из гипотезы прилипания , согласно которой при соприкосновении вязкой жидкости с неподвижными стенками непосредственно на них частицы жидкости имеют нулевую скорость. Опыты показывают, что эта гипотеза хорошо соответствует действительности и нарушается только при обтекании твердых поверхностей сильно разреженными газами.  [c.145]

Рассмотрены ламинарные течения вязкой несжимаемой жидкости и теплообмен в каналах при произвольном малом отклонении их поверхности от цилиндрической. Приведена линейная система уравнений и граничных условий для возмущенных динамических и тепловых полей, полученная путем линеаризации полной системы уравнений Навье-Стокса около решения для развитых течений в цилиндрических трубах произвольного сечения. Для практически важного случая, когда возмущения поверхности каналов сосредоточены на участке конечной длины, показано, что интегральные динамические и тепловые характеристики каналов находятся без решения трехмерных уравнений путем перехода к эффективным двумерным краевым задачам, сложность решения которых не выше, чем для развитых течений. Дано обобщение развитой теории на течения с силовыми источниками малой эффективности. Рассмотрены приложения к плоским каналам и круглым трубам с возмущенными поверхностями.  [c.374]

Короче говоря, теория пограничного слоя включает в себя упрощенные уравнения Навье — Стокса, основанные на малости некоторых членов вблизи твердой поверхности, и надлежащего сращивания течения вблизи поверхности с внешним потоком. Эта теория применялась к задачам как турбулентного, так и ламинарного течения, и получено большое разнообразие решений 145, 38]. К сожалению, поток за обтекаемыми телами после точки отрыва не может рассматриваться в рамках теории пограничного слоя. Таким образом, не существует теоретической оценки сопротивления для обтекаемых тел при числах Рейнольдса, при которых оказывается возможным отрыв потока.  [c.58]

В основе уравнений Навье — Стокса лежит предположение, что жидкость можно рассматривать как континуум. Кроме того,, обычно предполагается, что отсутствует проскальзывание на твердых поверхностях. Фактически это означает идеализацию процес-  [c.67]

В результате такого предельного перехода уравнения Навье — Стокса, составленные для всех подобластей, упрощаются, принимая тот или другой, зависящий от специфических особенностей движения в данной подобласти вид (уравнения Эйлера, уравнения Прандтля, уравнения медленного вязкого движения). Решения таких упрощенных уравнений, найденные для каждых двух смежных областей, сшиваются друг с другом. Наглядным примером может служить классическая теория пограничного слоя Прандтля. Предельный переход Ре —оо, что соответствует исчезновению вязкости (V 0), превращает уравнения Навье — Стокса в уравнения Эйлера. Но уравнения Эйлера не допускают интегрирования при граничных условиях, соответствующих прилипанию среды к поверхности твердого тела (нулевая относительная скорость на твердой поверхности).  [c.701]

Естественно появляется необходимость разбиения всей области течения на две подобласти внешнюю, описываемую уравнениями Эйлера с граничным условием только непроницаемости поверхности, т. е. равенства на ней нулю нормальной составляющей относительной скорости и внутреннюю тонкую пристеночную область — пограничный слой — в которой условие прилипания выполняется, но благодаря тонкости этой области, уравнения Навье — Стокса упрощаются и переходят в уравнение Прандтля. Напомним, что уравнения Прандтля получаются из уравнений Навье — Стокса предельным переходом Ре схэ уже только после того, как все величины в пограничном слое отнесены к своим характерным масштабам продольным, имеющим порядок единицы, и поперечным с порядком 1/]ЛРе.  [c.701]

В дополнение к трем уравнениям (g), которые должны удовлетворяться в каждой точке внутри тела, необходимо присоединить также условия на поверхности тела, где молекулярные силы должны находиться в равновесии с распределенными по граничной поверхности внешними силами. Обозначая три компоненты такой силы, действующей на элементарную площадку с внешней нормалью п, через Z и пользуясь принципом виртуальных перемещений, Навье получает требуемые краевые условия в следующем виде  [c.131]

Во второй половине мемуара для анализа равновесия упругого тела (в той же молекулярной постановке) Навье применил принцип виртуальных перемещений и в результате получил еще раз те же уравнения равновесия, а также выражение граничных условий на поверхности тела, где задано распределение напряжений. В заключение он дал уравнения колебаний упругого тела, вредя соответствующие инерционные члены.  [c.49]

Для вывода уравнений пограничного слоя на поверхности колеблющегося конуса в подвижной (неинерциальной) системе координат (t, х, у, z) воспользуемся классическими законами механики относительного движения [24]. При переходе от абсолютной неподвижной системы координат к подвижной, связанной с телом, в уравнениях динамики движения жидкой частицы появляются дополнительные силы инерции — переносные и кориолисовые, зависящие от выбора подвижной системы координат. Поскольку эти силы никак не связаны с вязкостью воздушной среды, обтекающей тело, то в уравнениях Навье-Стокса и пограничного слоя появляются дополнительные члены, которые не стремятся к нулю при Кеь -> оо.  [c.145]

Для тела, расположенного в неограниченном пространстве, когда движение жидкости наблюдается только у его поверхности, а остальная ее масса остается неподвижной, можно составить уравнения пограничного слоя. Путем анализа порядка величин и отбрасывания малых, так же как это было сделано для случая вынужденного движения (гл. VH), из уравнений Навье—Стокса для несжимаемой жидкости (П-29 и 11-30) получим уравнения движения для стационарного двумерного пограничного слоя с учетом (УП-9) и (VIi-10) при свободной конвекции в проекции на ось х в следующем виде  [c.194]

Малая толщина пограничного слоя и большие градиенты скорости в нем послужили основой, на которой Л. Прандтль развил- приближенную теорию интегрирования уравнений Навье—Стокса и построил теорию пограничного слоя. Эта теория позволяет рассчитывать течение в пограничном слое и определять касательные напряжения на поверхности тела. Однако она справедлива только до точки отрыва пограничного слоя и не дает возможности, например, вычислить полное сопротивление, испытываемое телом (за исключением случаев, когда отрыва погранслоя не происходит). В настоящее время вообще не существует теории, по которой можно рассчитать сопротивление тела, движущегося в жидкости.  [c.40]


Для решения основного уравнения динамики вязкого газа (уравнение Навье — Стокса) в проекциях на оси координат необходимо совместить направление движения ленты между двумя роликами с положительным направлением оси X. Ось У направить перпендикулярно к абразивной поверхности ленты, ось 2 — поперек, затем принять граничные условия  [c.193]

Нельзя требовать условий прилипания на твердой стенке сосуда для пульсационной скорости Vj, а следует ограничиться условием непротекания п Уj g = 0. Формально это связано с понижением порядка уравнений (4.1.16) по сравнению с уравнением Навье—Стокса, а физически означает, что найденное таким образом решение для пульсационной составляюш ей скорости верно всюду, кроме вязкого стоксовского слоя вблизи твердой поверхности (и поверхности раздела сред).  [c.162]

Постановка (3.6) в уравнения Навье-Стокса (3.2)-(3.5) и совершение предельного перехода е О, очевидно, приводит к полным уравнениям Эйлера. Им соответствуют обычные граничные условия задачи о невязком течении, включая условия равенства нулю нормальной на теле составляющей вектора скорости и условия совместности на ударных волнах и контактных поверхностях, если они появляются в потоке.  [c.73]

При анализе течения в окрестности точки разрыва каталитических свойств поверхности нужно учитывать, что при переходе с некаталитической поверхности на идеально каталитическую, например, плотность газа вблизи поверхности тела увеличивается на свою характерную величину, т. е. линии тока смещаются к поверхности тела, что соответствует обтеканию впадины на поверхности тела. Для течений такого типа может нарушаться одно из предположений теории пограничного слоя Прандтля о малости продольных градиентов функций течения по сравнению с поперечными и становится необходимым использование полных уравнений Навье-Стокса.  [c.123]

При обтекании вязкой жидкостью неподвижных твердых поверхностей распределение скоростей всегда неравномерное, так как помимо вытесняющего влияния на жидкость твердая поверхность оказывает еще тормозящее действие, являющееся следствием прилипания к ней жидких частиц. При малых числах Рейнольдса переход от нулевых скоростей на стенке к их конечным значениям может происходить постепенно так, что область тормозящего влияния стенки оказывается сравнимой со всей областью течения. Рассчитать такое течение можно, используя полные уравнения Навье—Стокса (или уравнения Рейнольдса, если поток турбулентный), решение которых является непростой задачей. Однако при больших числах Рейнольдса течение приобретает некоторые особенности, позволяющие эту задачу упростить. Так, по мере возрастания Re область вблизи стенки, где происходит интенсивное нарастание скоростей, становится все более узкой в этой области сосредоточивается основное влияние вязкости в ней локализуется интенсивное вихреобразование, а за ее пределами поток оказывается слабозавихренным и может приближенно считаться потенциальным.  [c.325]

Проблемы конвективного теплообмена при низких давлениях те же, что в обычной газодинамике и теплотехнике, осложненные, однако, дополнительными эффектами. Речь идет в конечном счете об определении количеств тепла, которыми обмениваются твердые поверхности различной формы с обтекающим эти поверхности потоком газа. Указанные количества тепла, отнесенные к единице площади и единице времени, будем называть удельными потоками тепла или.просто тепловыми потоками. После приведения к безразмерному виду i(Nu, St) тепловые потоки оказываются функциями многих безразмерных параметров, из которых в первую очередь надо назвать числа Рейнольдса Re, Маха М, энтальпийный фактор hw, коэффициент аккомодации а и коэффициент диффузного отражения о. Как известно, эффекты разреженности проявляются, начиная с некоторых значений числа Кнуд-сена Кп, представляющего собой отношение средней длины свободного пробега молекул к характерному линейному размеру. Эффекты разреженности прежде всего приводят к изменению условий на твердой поверхности обтекаемого тела вместо прилипания, т. е. непрерывного перехода температуры и скорости от значений в газе к значениям в теле, появляются скольжение газа и скачок температур у стенки. Что касается уравнений, описывающих процесс обтекания и теплообмена, то практически в настоящее время пользуются уравнениями Навье-Отокса.  [c.36]

Оно идентично соответствующему выражению, приводимому Стимсоном и Джеффри [36]. Это выражение применимо к различным течениям Стокса независимо от типа граничных условий, и, в частности, его применимость не ограничивается задачами для жидкостей, занимающих все пространство. Заслуживает внимания то, что это выражение применимо также к полным уравнениям Навье — Стокса в тех случаях, когда скорость исчезает на поверхности тела тогда инерционный член v-Vv, который обычно вносит вклад в выражение для изменения давления dpids вдоль границы, равен нулю в каждой точке поверхности. В этом смысле приведенное выше выражение согласуется с формулой Уолтона [38].  [c.136]

В режиме со скольжением условия течения и механизм взаимодействия газа с поверхностью существсцко отличается от условий сплошной среды. Утолщение ударной волны и пограничного слоя оказывают влияние на аэродинамику и теплообмен. Однако применение Уравнений Навье—Стокса в целом ряде газодинамических задач, относящихся к разреженному газу, дает результаты, достаточно хорошо совпадающие с экспериментальными данными. Поэтому практический интерес приобретает анализ возможностей распространения уравнений пограничного слоя с граничными условиями, учитывающими новый характер взаимодействия, на область течений со скольжением.  [c.159]

Как известно из теории невязкой сж имаемой жидкости, в сверхзвуковом потоке могут возникать ударные волны. В рамках невязкой жидкости ударные волны описываются как поверхности разрыва. При использовании уравнений Навье — Стокса ударная волна представляет собой область, в которой физические величины изменяются гладко, но быстро, а ударный слой имеет конечную толщину, вообще говоря, порядка средней длины свободного пробега. Эта малая толщина указывает на то, что, строго говоря, уравнениями Навье — Стокса здесь пользоваться нельзя. Чтобы получить надежные результаты для структуры ударных волн, нужно обратиться к уравнению Больцмана.  [c.411]

При больших числах Рейнольдса представляют интерес течения невязкой жидкости с постулированными на основании опыта тангенциальными (вихревыми) поверхностями разрыва скорости, которые можно рассматривать как отрывные течения при числе Рейнольдса, равном бесконечности. Весьма важные результаты получены с помощью асимптотических методов решения уравнений Навье — Стокса при числе Рейнольдса, стремящемся к бесконечности, которые являются развитием классической теории пограничного слоя Прандтля. Эти методы применяются в тех случаях, когда нарушаются основные предположения теории пограничного слоя, например вследствие изменения граничных условий. К таким случаям относятся и характерные области отрывных течений (отрыва и присоединения). При отрыве сверхзвукового потока эти области могут приобретать общие локальные свойства, не зависящие от конкретного вида отрывного течения, что способствовало дальнейшему развитию теории сверхзвуковых отрывных течений и стимулировало пересмотр представлений об отрыве при малых скоростях. Хотя при достаточно больших числах Рей-лольдса течение в пограничном слое становится турбулентным, интервал больших докритических чисел Рейнольдса представляет практический интерес, а результаты, получаемые с помощью асимптотических методов, позволяют осуществить общий анализ отрывных течений, определить критерии подобия и, несомненно,  [c.234]

Перейдем теперь к результатам исследования течений с очень большими локальными градиентами давления. Основные положения асимптотической теории течений этого типа приведены в работе [35]. В качестве типичного примера рассматривается течение разрежения около угловой точки контура тела в сверхзвуковом потоке вязкого газа.Угловая точка может иметь небольшое округление с малым радиусом кривизны порядка толшдны невозмущенного пограничного слоя ( Ке / ). В этом случае, согласно классической теории пограничного слоя, при Йе -> оо на большей части течения влияние вязкости исчезает и уравнения Навье — Стокса переходят в уравнения Эйлера. Вблизи поверхности тела в пределе образуется поверхность тангенциального разрыва (благодаря чему выполняются условия прилипания), которая при некоторых условиях может отрываться от поверхности тела.  [c.249]


Однако около угловой точки давление и угол наклона вектора скорости меняются на порядок по величине на малой длине. Тогда в области толщиной Ве имеющей всегда дозвуковой участок профиля скорости, составляющие скорости и, е , нормальные и тангенциальные к поверхности тела, имеют одинаковый порядок величин. Из уравнений неразрывности и импульса следует, что на длинах в окрестности угловой точки продольный и поперечный градиенты давления имеют одинаковый порядок. Использование этих оценок при совершении предельного перехода Не оо в уравнениях Навье — Стокса приводит к уравнениям Эйлера. Однако решения уравнений Эйлера не позволяют удовлетворить условиям прилипания на контуре тела. Поэтому на длинах Не / приходится рассматривать еще один, более тонкий слой, в котором главные члены уравнений Навье — Стокса, связанные с вязкостью, имеют порядок инерционных членов. Из этого условия вытекает оценка толщины области вязкого течения, которая оказывается пропорциональной Не" . В случае обтекания нетеплоизолнрованного тела возникают дополнительные особенности предельного решения уравнения энергии, с которыми можно познакомиться в работе [21]. Использование известного принципа асимптотического сращивания решений в разных характерных областях течения (см., например, [41]) позволяет получить все необходимые граничные условия. Сращивание решений для локальной области, имеющей продольный и поперечный размеры Не" / , и для внешнего сверхзвукового потока дает внешнее краевое условие для локальной области. Сращивание с решением в невозмущенном пограничном слое дает профили параметров в невозмущенном набегающем потоке , т. е. при (ж/Не" /2) ----оо. Из-за малой толщины области вязкого течения  [c.249]

В связи с этим любопытно отметпть один класс движений, для которого существует общий интеграл уравнений Навье-Стокса, однако граничное условие и, = 0 на поверхности тела, Вообще говоря, не удовлетворяется. Мы имеем в виду движение с потенциалом скоростей. Предположим, что вязкая, несжимаемая жидкость движется так, что существует потенциал скоростей 9, т. е. имеют место равенства  [c.534]

Основным предположением классической теории пограничного слоя Прандтля [Prandtl L., 1904] является малость продольных градиентов функций течения в пограничном слое (скорости, температуры) по сравнению с поперечными. Однако существует много задач динамики вязких течений газов при больших числах Рейнольдса, для которых это допущение не выполняется. К ним относятся, в частности, задачи с различного рода локальными особенностями течения в окрестности угловых точек контура тела, мест присоединения зон отрыва и др. В настоящей главе исследуются течения, в которых на коротких расстояниях (например, порядка толщи ны пограничного слоя) давление в сверхзвуковом потоке вблизи поверхности тела изменяется на свой основной порядок. Для этого проводится исследование асимптотического поведения решений уравнений Навье-Стокса в возникающих характерных областях течения и используется известный принцип сращивания асимптотических разложений, представляющих решение в различных областях.  [c.71]

Рассматривается обтекание плоской полубесконечной пластины равномерным сверхзвуковым химически неравновесным потоком вязкого газа при больших, но докритических числах Рейнольдса Re, Предполагается, что газ представляет собой бинарную смесь атомов и двухатомных молекул, состоящих из тех же атомов, а температура поверхности пластины не превышает уровня, при котором начинается диссоциация молекул при локальном давлении. Исследуется влияние скачкообразного изменения температуры и каталитических свойств поверхности пластины на некотором расстоянии I от передней кромки на обтекание и нагревание пластины. Строится решение уравнений Навье-Стокса совместно с уравнением сохранения массовой концентрации атомов при Re = p u i/oo. Ниже в данном параграфе используются те же безразмерные переменные, что и в предьщущих параграфах, температура отнесена к /R (т — молекулярный вес молекулярного компонента газа, R — универсальная газовая постоянная), тепловой поток к pooU , коэффициент ка-талитичности поверхности к Uoo, удельные теплоемкости к R/m, остальные функции течения к своим значениям в набегающем потоке.  [c.123]


Смотреть страницы где упоминается термин Уравнения Навье на поверхности : [c.213]    [c.297]    [c.319]    [c.334]    [c.49]    [c.259]    [c.224]   
Теория упругости (1970) -- [ c.25 ]



ПОИСК



Навой 97, XIV

Навье

Навье уравнение

Поверхности Уравнения



© 2025 Mash-xxl.info Реклама на сайте