ПОИСК Статьи Чертежи Таблицы При больших числах Рейнольдса представляют интерес течения невязкой жидкости с постулированными на основании опыта тангенциальными (вихревыми) поверхностями разрыва скорости, которые можно рассматривать как отрывные течения при числе Рейнольдса, равном бесконечности. Весьма важные результаты получены с помощью асимптотических методов решения уравнений Навье — Стокса при числе Рейнольдса, стремящемся к бесконечности, которые являются развитием классической теории пограничного слоя Прандтля. Эти методы применяются в тех случаях, когда нарушаются основные предположения теории пограничного слоя, например вследствие изменения граничных условий. К таким случаям относятся и характерные области отрывных течений (отрыва и присоединения). При отрыве сверхзвукового потока эти области могут приобретать общие «локальные» свойства, не зависящие от конкретного вида отрывного течения, что способствовало дальнейшему развитию теории сверхзвуковых отрывных течений и стимулировало пересмотр представлений об отрыве при малых скоростях. Хотя при достаточно больших числах Рей-лольдса течение в пограничном слое становится турбулентным, интервал больших докритических чисел Рейнольдса представляет практический интерес, а результаты, получаемые с помощью асимптотических методов, позволяют осуществить общий анализ отрывных течений, определить критерии подобия и, несомненно, [Выходные данные]