Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Оценка

Для большинства местных сопротивлений оценку величины в переходной зоне можно сделать по формуле А. Д. Альтшуля  [c.152]

Третьим параметром является живое сечение газораспределительного устройства — отношение суммарной площади отверстий в решетке к сечению слоя. Этот параметр по сути дела не независимый, а производный от первого, так как при заданной рабочей скорости фильтрации чем меньше живое сечение, тем больше скорость газа в отверстиях решетки и выше ее гидравлическое сопротивление. Оценка устройств по живому сечению мало пригодна для точных расчетов, но удобна для ориентировочных оценок. Например, если живое сечение решетки равно 1—3%, то можно утверждать, что это решетка с относительно большим гидравлическим сопротивлением и она обеспечит довольно стабильное псевдоожижение, но, может быть, за счет излишне высокого расхода электроэнергии.  [c.199]


Коэфициента сопротивления оценка. . . 420  [c.899]

Важно понимать, что приведенный выше анализ основывается на линейном уравнении, хотя оно и учитывает при помощи члена, содержащего А, некоторые эффекты памяти. Действительно, для обтекаемых тел простой геометрии (таких, как сферы и цилиндры) решение уравнения (7-4.3) можно довести до вычисления коэффициента лобового сопротивления в явном виде [15, 17]. Кажущаяся значительно более простой задача, состоящая в вычислении коэффициента лобового сопротивления для течения обобщенных ньютоновских жидкостей (т. е. жидкостей, для которых напряжение задается уравнением (2-4.1)), оказывается практически более сложной для решения из-за нелинейности члена, описывающего вязкие напряжения даже для тела простейшей геометрии (сфера) получены лишь оценки для несовпадающих верхней и нижней границ решения [18].  [c.277]

Вид уравнения (7-5.20) согласуется с корреляцией данных по снижению сопротивления, приведенной на рис. 7-3, и с оценкой числа De в уравнении (7-5.3).  [c.287]

Определена автомодельная область турбулентного течения газового теплоносителя по числу Re, в которой коэффициент гидродинамического сопротивления для стабильной структуры шаровой укладки остается постоянным проведена численная оценка степени турбулентности газового потока при течении его через шаровые твэлы.  [c.106]

Для более точной оценки коэффициента сопротивления и взвешивающей скорости шара (по Res) целесообразно пользоваться табл. 2-1, построенной с использованием данных (Л. 290].  [c.48]

Представляет интерес разработка в [Л. 49] единого метода оценки коэффициента лобового сопротивления частиц при всех режимах обтекания с учетом их несферичности и концентрации. Идея получения универсальной зависимости для массы частиц путем введения в рассмотрение модифицированного Re% еще ранее была использована в [Л. 105]. В [Л. 49] предлагается число Не в,ст определять как  [c.62]

При противоточном падении частиц в камере с тормозящими элементами общий коэффициент аэродинамического сопротивления можно оценить по правилам оценки местного сопротивления, представив его как сумму трех слагаемых  [c.131]

Сведения о гидравлическом сопротивлении неподвижного слоя важны как исходные для оценки потерь давления в противоточно и перекрестно продуваемых движущихся системах. По неподвижному слою имеется обширная литература, в частности рассмотренная в [Л. 6, 124, 130, 138, 184]. Несмотря на множество расчетных рекомендаций, будем их различать по тому, как они отражают роль вязкостных и инерционных сил потока в слое, определяющих характер режима фильтрации.  [c.282]


Для оценки механических свойств важно не только сопротивление металла разрушению, но и характер разрушения, т. е., как произошло разрушение.  [c.40]

Для количественной оценки местной коррозии металлов, помимо упомянутых ранее глубинного /( и прочностного Ка показателей коррозии и показателя изменения электрического сопротивления Kr (см. с. 40 и 266), приняты также следующие показатели коррозии  [c.414]

Уорд И Комптон [57], сравнивая в интервале от 4,2 до 373,15 К 37 платиновых термометров сопротивления из десяти лабораторий. Сличение было выполнено в пятидесяти температурных точках, с тем чтобы обнаружить расхождения их градуировок как в реперных точках, так и между ними. Оценка точности сличений приведена на рис. 2.5, который служит хорошей иллюстрацией современных возможностей сличения термометров при низких температурах. Происхождение термометров было весьма различным, основная часть поступила от трех коммерческих фирм, а остальные были сделаны  [c.57]

Необходимо сразу отметить, что процессы, обусловливающие электропроводность, очень сложны. Хотя качественная сторона этих процессов вполне ясна и теория позволяет предсказать общий вид температурной зависимости сопротивления металлов,, сплавов и полупроводников, однако количественные оценки недостаточно точны для расчета характеристик термометров сопротивления. Основная трудность вычислений связана с необходимостью точного теоретического учета относительного вклада различных конкурирующих процессов.  [c.187]

Для оценок можно принимать, что коэффициент сопротивления деформирующейся и дробящейся капли описывается формулой  [c.261]

Определение твердости материалов, В некоторых случаях для оценки величины временного сопротивления можно воспользоваться косвенным методом, в частности измерением твердости.  [c.103]

Одной из важнейших задач сопротивления материалов является оценка жесткости конструкции, т. е. степени ее искажения под действием нагрузки, смещения связей, изменения температуры. Для решения этой задачи необходимо определить перемещения (линейные и угловые) любым образом нагруженной упругой системы (балки, рамы, криволинейного стержня, фермы и т. д.). Та же задача возникает при расчете конструкций на динамические нагрузки и при раскрытии статической неопределимости системы. В последнем случае, как уже отмечалось, составляются так называемые уравнения совместности деформаций, содержащие перемещения определенных сечений.  [c.359]

Прежде всего необходимо отметить, что в современных условиях развития науки и техники, когда появляются новые классы ранее неизвестных материалов, обладающих часто специфическими свойствами, взгляды на такие материалы и оценку их сопротивления из-  [c.660]

Нетрудно показать, что конвективная составляющая не оказывает заметного количественного влияния на общее сопротивление. В предположении изотермичности течения идеального газа интегрирование последних двух слагаемых правой части уравнения (2.9) по толщине 6 пористого материала и оценка величины их отношения  [c.23]

Здесь A (Re) - слабо меняющаяся функция. Отсюда следует, что при заполнении канала коэффициент гидравлического сопротивления возрастает пропорционально величине 5 а или, учитывая, что а пропорционально ( с ч) квадрату отношения ширины канала и среднего ра> мера частиц пористого материала. Оценка полученного отношения при реальных значениях 5 = 3,5 мм, а = 10 м дает величину = Ю".  [c.124]

Полученные оценки приближенны, так как даже для одного и того же процесса на разных режимах сварки энергозатраты могут различаться в 1,5...2 раза, что определяется параметрами режима и свариваемого сплава. Кроме того, к. п. д. источника теплоты непостоянен ввиду его зависимости от скорости сварки, состояния поверхности и др. Для одного и того же источника энергии, например, при контактной сварке внутреннее сопротивление машины может отличаться в 10 раз и соответственно этому изменяться к. п. д. источника.  [c.25]

Существуют способы оценки склонности металла к возникновению хрупкого разрушения и его сопротивления распространению хрупкой трещины. Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов Шарпи с V-образным надрезом на ударный изгиб при различных температурах. Критерий оценки — критическая температура перехода от вязкого к хрупкому разрушению 7, или порог хладноломкости (рис.  [c.545]


Для оценки сопротивления металла нестабильному распространению хрупкой трещины применяют один из двух взаимосвязанных критериев критический коэффициент интенсивности напряжений /( t(H/M ) или вязкость раз-рушения С7с(Дж/м ). Коэффициент интенсивности напряжений  [c.545]

Приведенные зависимости (5.29-5.31) можно непосредственно использовать для ориентировочной оценки предела прочности (временного сопротивления) или предела текучести металла диагностируемых участков обследуемого аппарата по результатам их испытания на твердость.  [c.319]

Все вышеперечисленные методы дают качественную оценку технического состояния оборудования. При их проведении обнаруживаются объемные опасные дефекты, такие как трещины, подрезы, непровары, поры. Однако необходимо отметить, что появление таких дефектов является лишь заключительной стадией процессов, происходящих на микроуровне и сопровождающихся изменением характеристик прочности, пластичности и трещиностойкости. Одним из таких процессов является охрупчивание (деформационное упрочнение) материала, вызывающее повышение временного сопротивления Св, предела текучести Пг и снижение запаса пластичности, ударной вязкости и трещиностойкости. Это, в свою очередь, увеличивает вероятность хрупкого разрушения даже при температурах выше предела хладноломкости.  [c.337]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]

Если в результате испытаний образцов оказалось, что ударная вязкость и пластические свойства (относительное удлинение 5 и сужение /) ниже нормативных требований, то должны быть проведены дополнительные расчеты по оценке сопротивления хрупкому разрушении по критериям трещиностойкости с привлечением специализированных научных подразделений и специалистов, ответственных за конструирование, изготовление и эксплуатацию обследуемого аппарата.  [c.370]

Если взять для оценок 1 ё с и среднее значение тока / 1 мА, для относительной величины дробовых шумов получим Ы/1 10 что не так уж мало (заряд электрона здесь удобно брать в единицах СИ е=1,б 10 кл). При внутреннем сопротивлении  [c.45]

Почва представляет собой неперемешиваемый электролит, отличающийся высоким электрическим сопротивлением. Оценка агрессивности почвы может быть осуществлена по величине электросопротивления, которая обусловлена влажностью, солевым составом и пористостью.  [c.120]

Почвы представляют собой непереме-шиваемый электролит, отличающийся высоким электрическим сопротивлением. Оценка агрессивности почвы ко-жет быть осуществлена по величине электросопротивления, которая обусловлена влажностью, солевым составом и пористостью. Ниже приведены данные, характеризующие взаимосвязь между электросопротивлением и агрессивностью почвы.  [c.14]

Для оценки примем а = = 10 Вт/(м -К) (уточненно это значение необходимо считать как в примере 12.1). Термическими сопротивлениями теплоотдачи от воды и теплопроводности стенки металлического радиатора можно пренебречь f = 2,6 м .  [c.213]

Рассмотрим использованный выше в порядке первого приближения прием расчленения общего коэффициента сопротивления на слагаемые. Оценка только по об дает лишь количественный результат, поскольку этот коэффициент является интегральным. Поэтому стремление дифференцировать сложный шроцеюс привело к коэффициентам I, п, которые, однако, в определенной мере условны. Сложность заключается (В том, что все составляющие 1об не являются независимыми друг от друга величинами. Действительно, сопротивление трения чистого газа будет при наличии частиц и прочих равных условиях иным, чем при их отсутствии в связи с изменением обстановки в пристенном слое. По этой же причине т может иметь место и в тех случаях, когда движение твердых частиц не приводит к их сухому трению и ударам о стенки (Фт О), а лишь вызовет внутренние силы межкомпонентных взаимодействий. Вот почему при выбранном методе расчленения об коэффициент т(Арт) учитывает все (за исключением Ара) дополнительные потери давления, которые появляются из-за наличия частиц в потоке. Оценка общего коэффициента сопротивления дисперсного потока по зависимости типа об=ф1 [Л. 283] пригодна лишь для горизонтальных потоков, где п=0. Согласно (Л. 283] <р= 1 +1,6р 10иви +(1+2р)]. Нетрудно показать, что такая обработка опытных данных приводит в итоге также к расчленению об на составляющие. Действительно,  [c.125]


Последнее выражение позволило в [Л. 309] прийти к выводу, что при предельном увеличении концентрации и Z— -оо усиление теплообмена за счет турбулентного переноса тепла частицами составит не более 30%. Такой результат, расходящийся со многими опытными данными и оценкой по теоретической зависимости (6-15), получен в результате ряда упущений и неоправдаиных упрощений. Так, например, для дисперсного и чистого потока е , I, ti i, и приняты одинаковыми. Иначе говоря, при таком подходе все улучшение теплообмена, вызываемое наличием и турбулентными перемещениями частиц, учитывается лишь изменениями в ядре потока, где термическое сопротивление и без того мало. Изменение в пограничном слое, где термическое сопротивление наибольшее и лимитирует результирующий теплопере-нос к стенке, полностью игнорируются. Поэтому естественно, что улучшение теплообмена лишь в пределах турбулентного ядра, без учета одновременно цроявляю-щихся важнейших изменений в вязком подслое дало предельный прирост для Nun/Nu лишь 30%.  [c.202]

Для оценки степени растекания потока Естр/Е, по фронту плоской решетки при заданном коэффициенте сопротивления Ср и для расчета значения Спотр при заданной степени растекания Е тр/Ек можно использовать формулы соответственно (4.85) и (4.95). Для трубчатой решетки с острыми входными кромками должны применяться формулы соответственно (4.89) и (4.97).  [c.181]

Следует отметить, что накопление повреждений будет происходить и при условии, когда напряжения еще не достигают циклического предела текучести 5т, так как в этом случае идут процессы микротекучести. Тем не менее повреждаемость материала в условиях микротекучести будет достаточно малой и поэтому скоростью развития трещины при оценке AKth можно пренебречь (dL/dN Q). Строго говоря, при расчете НДС в окрестности вершины трещины нужно использовать параметр ат" < От, характеризующий сопротивление материала микро-пластическому деформированию. Однако известно, что в этом случае большинство положений теории пластичности не приемлемо [195, 206, 379]. Выходом из этого положения является анализ НДС в рамках теории пластичности (в расчет вводится параметр От), но и при анализе накопления повреждений учитывается повреждаемость от упругих (с макроскопических позиций) деформаций (см. раздел 2.3).  [c.214]

Уравнения (21.35) и (21.37) можно считать основными зависимостями для оценки долговечности при малом числе циклов нагружения, когда преобладаюш,ее значение имеет сопротивление материала пластическим деформациям. С увеличением числа циклов до разрушения, т. е. с уменьшением размаха пластической деформации, упругая часть деформации становится соизмеримой с пластической. В связи с этим предложены критерии малоциклового разрушения в упругих и суммарных деформациях.  [c.624]

Большинство известных способов интенсификации теплообмена в каналах приводит к повышению гидравлического сопротивления. При этом для конкретного теплообменного устройства в зависимости от критерия оценки эффективности интенсификации положительный эффект достигается при соблюдении определенного условия между отношениями чисел Нуссельта Nu /Nu и коэффициентов сопротивления для каналов с интенсификацией (Nu, ) и без нее (Nu, ). Так, например, в [ 13] показано, что при интенсификации теппообмена в турбулентном потоке в каналах трубчатого теплообменного аппарата положительный эффект интенсификации, оцениваемый тремя различными критериями, достигается при выполнении степенной зависимости / < (Nu /Nu) .  [c.123]

Таким образом, рассматриваемый способ интенсификации теплообмена в каналах отличается от других известных особенно значительным увеличением как теплообмена а /ог, так и гидравлического сопротивления / . Последнее и является его наиболее слабым местом. Выполним оценку эффективности интенсификации теплообмена с помошью проницаемого высокотеплопроводного заполнителя, используя в качестве критерия сравнение мощностей, затрачиваемых на прокачку теплоносителя в канале с матрицей и без нее при одинаковых габаритах, плотности внешнего теплового потока и одинаковой максимальной температуре стенки канала на его выходе.  [c.124]

Задача сопротивления материалов заключается не только в том, чтобы выявить внутренние особенности изучаемых объектов, но также и и том, чтобы в дальнейшем мржно было дать полученным закономерностям пра[ ильное толкование при оценке работоспособности и практической п]шгодности рассматриваемой конструкции. В математической теории упругости этот вопрос совершенно не затрагивается.  [c.10]

Пусть головная часть тела, поверхность которого может пропускать газ, ограничена прямоугольником 0<х<Х,0 у К, гдеЛГ,К — заданные числа. Выберем контрольный контур следующим образом. Обозначим через ta линию Маха равномерного набегающего потока, приходящую в некоторую точку а. Если схема тела отвечает рис. 3.48, то точкой а является передняя точка заостренного профиля. Из нее могут исходить присоединенные ударные волны. Если тело вызывает отошедшую ударную волну, то в качестве точки а выбирается точка на пересечении ударной волны и линии тока, отделяющей массу газа, которая попадает вег внутренние полости тела. Остальную часть контура, которая может пропускать газ, обозначим через ah. Вместо линии ta может быть взята линия за. Контур sah замыкается осью симметрии и образующей поверхности тела hd. Если окажется, что для получения максимального сопротивления на тело должен воздействовать газ, не прошедший через ударную волну, то результаты решения вариационной задачи позволят сделать дальнейшие выводы об оценке величины сопротивления.  [c.168]


Смотреть страницы где упоминается термин Сопротивление Оценка : [c.254]    [c.18]    [c.245]    [c.247]    [c.175]    [c.317]    [c.345]    [c.24]    [c.168]    [c.97]   
Термопрочность деталей машин (1975) -- [ c.100 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте