Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения в частных производных и краевые задачи

УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ И КРАЕВЫЕ ЗАДАЧИ  [c.158]

Уравнения (1.150) — (1.152), (1.153) — (1.155) представляют собой уравнения в частных производных и, как известно из общей теории краевых задач для систем уравнений с частными производными, для выделения единственного решения необходимо задать краевые условия (для ограниченных тел), условия на бесконечности (для неограниченных тел) и начальные условия, если независимая переменная — время t является существенной. Эти требования представляют собой математическое отражение того факта, что в одной и той же среде могут происходить различные процессы (деформации и др.) в зависимости от того, какие из искомых параметров и каким образом заданы на границе тела, на бесконечности и в момент начала развития процесса.  [c.33]


Предварительные замечания. Под упругими распределенными системами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы. В отличие от систем с сосредоточенными параметрами (с конечным числом степеней свободы п), динамическое поведение которых можно описать системой обыкновенных дифференциальных уравнений относительно обобщенных координат i/y (I) (/ = 1, 2,. .., а) (см. часть первую), поведение распределенных систем описывают дифференциальными уравнениями в частных производных относительно некоторых функций координат и времени. Распределенные упругие системы называют линейными, если они описываются линейными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется формулировка краевых условий.  [c.135]

Предварительные замечания. Под упругими системами с распределенными параметрами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы, их динамическое поведение выражают дифференциальными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется задавать краевые (граничные) условия.  [c.329]

Недостатком такой теории является, однако, то, что, будучи громоздкой, она в то же время недостаточно обща. Объясняется это тем, что возможности асимптотического метода ограничены и находятся (как видно из приведенного выше элементарного примера) в существенной зависимости от свойств коэффициентов дифференциальных уравнений (а для уравнений в частных производных и от свойств тех границ, на которых задаются краевые условия). Надо добавить также, что принятие быстроизменяющейся части решения в экспоненциальной форме (как это делает А. Л. Гольденвейзер) не исчерпывает всех возможностей асимптотического метода. Иногда удается строить асимптотические решения на базе других быстроизменяющихся функций (например, при расчете торообразных оболочек и решении некоторых задач сферической оболочки для этой цели успешно можно применить Бесселевы функции).  [c.81]

Если заданы краевые условия задачи (85), кроме аппроксимации уравнения в частных производных и начальных условий необходимо аппроксимировать и краевые условия. Для этого узлы, лежащие на прямых х — О, х = nh, t = О, будем считать граничными, а остальные внутренними. Для внутренних узлов справедливо уравнение (87). Для узлов, лежащих по прямой t = О, выполняются начальные условия (88). Для узлов, лежащих на прямых X = О и х — nh, можно записать соотношения  [c.136]


Здесь штрихи у безразмерных переменных опущены. Уравнение неразрывности и краевые условия в безразмерных переменных не содержат параметров и сохраняют прежний вид. Используя приближенные приемы решения уравнений с частными производными, полученную краевую задачу можно свести к системе вида (10). Поэтому неудивительно, что зависимость от частоты амплитуд в табл. 2, 3 находится в полном соответствии с приведенной теоремой. Чтобы подчеркнуть это соответствие, в двух последних столбцах таблиц приведены значения безразмерных параметров и Для рассматриваемого датчика 1 1 =  [c.613]

Краевые задачи для уравнений в частных производных и некоторых классов операторных уравнений. УМН 11, № 6 (72) 1956, 41—97.  [c.641]

Краевые условия. Уравнения (1.2), (1.4), (1.6), (1.7) имеют множество решений. Для получения единственного решения необходимо задавать краевые условия (сведения об искомых непрерывных функциях на границах рассматриваемых областей — граничные условия, а в случае нестационарных задач — значения этих же функций в начальный момент времени — начальные условия). Исходное дифференциальное уравнение в частных производных вместе с краевыми условиями носит название дифференциальной краевой задачи и представляет собой ММ исследуемого объекта.  [c.10]

Метод разделения переменных, сводящий решение уравнения в частных производных к решению нескольких обыкновенных дифференциальных уравнений, при определенных условиях может быть применен и для решения краевых задач. Попытаемся решить задачу о стационарном распределении температуры в круглой пластинке радиуса а с различными краевыми условиями на границе 5 пластинки.  [c.170]

Для того чтобы отыскать весовую функцию стационарного объекта, необходимо, как и в нестационарном случае, решить краевую задачу для уравнений в частных производных, подобную задаче (3.2.5), (3.2.6), хотя и с постоянными во времени коэффициентами. Решить такую задачу, конечно, гораздо сложнее, чем обыкновенное дифференциальное уравнение (3.2.16) с граничным условием (3.2.17). Таким образом, при исследовании стационарных объектов, математическая модель которых включает дифференциальные уравнения в частных производных (объекты с распределенными параметрами), передаточная функция является наиболее простым и эффективным средством описания оператора. Ее отыскание — главная задача при исследовании динамики объекта.  [c.101]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, так как этот принцип позволяет получить не только дифференциальные уравнения задачи, но также и краевые условия, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных.  [c.842]

В настоящей работе рассматриваются свободные и вынужденные колебания упругой гироскопической системы с распределенными и сосредоточенными массами. Члены, соответствующие силам внешнего и внутреннего трения, считаются малыми они отнесены к правым частям и входят под знак малого параметра а. Таким образом, формально линейные дифференциальные уравнения в частных производных, описывающие колебания исследуемой системы, и краевые условия приобретают вид квазилинейных. Рассматриваемая краевая задача решается методом малого параметра, обобщенным на системы с распределенными и сосредоточенными параметрами [1]..  [c.6]


До настоящего времени такая задача теории дифференциальных уравнений в частных производных не рассматривалась. Для преодоления этой трудности при решении системы I применяется обычный прием соответствующим выбором функции координат систему I сводят к системе обыкновенных дифференциальных уравнений с двумя локальными граничными условиями (названной системой II). Решение такой краевой задачи достаточно полно освещается в теории обыкновенных дифференциальных уравнений. Подобное преобразование координат не является единственным, т. е. имеет место неоднозначное соответствие [14 1, 2, 4]. Различные авторы пытались получить систему II в виде обычной дифференциальной системы. Ввиду сложности явлений в пограничном слое это не всегда возможно. Недавно автор получил систему II в виде обычной однопараметрической дифференциальной системы [14 1,4]. Эта система охватывает большой круг задач по пограничному слою. Над системой II необходимо провести следующие математические доказательства а) доказательство существования и единственности решения системы II с двумя соответствующими граничными условиями б) доказательство существования и единственности потока в отношении некоторых принимаемых условий в) доказательство, что решение системы II с двумя соответствующими локальными граничными условиями является решением системы I с двумя соответствующими функциональными граничными условиями.  [c.82]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]

В противном случае систему называют нелинейной. Линейность дифференциальных уравнений и дополнительных условий относительно и (/) еще не означает линейности оператора Н. Так, параметрические системы нелинейны по отношению к параметрическим возмущениям, что находит отражение, например, в методах их аналитического исследования (см. гл. XIX). Как и в теории детерминистических колебании, вводятся понятия о стационарных и нестационарных системах, о системах с конечным, бесконечным счетным и континуальным числом степеней свободы. Операторное уравнение (2) для распределенных систем обычно реализуется в виде дифференциальных уравнений в частных производных с соответствующими граничными и начальными условиями. Поэтому применительно к задачам случайных колебаний распределенных систем применяют также термин стохастическая краевая задача.  [c.286]

Граница называется открытой, если она уходит на бесконечность и граничные условия для жидкости на бесконечности отсутствуют. Уравнения Стокса относятся к классу уравнений в частных производных, известных как эллиптические уравнения. Для этих уравнений предпочтительно ставить краевые задачи с замкнутыми границами. В обычно используемых граничных условиях задаются либо сам вектор поля на границе, либо же величины первых производных его компонент в тангенциальном направлении к границе.  [c.78]

Условимся говорить, что любое частное решение уравнений равновесия в объеме и на поверхности определяет статически возможное состояние среды. Многообразие таких состояний — многообразие удовлетворяющих трем краевым условиям (1.5.15) частных решений системы трех дифференциальных уравнений в частных производных (1.5.6), содержаш,их шесть неизвестных. Задача статики сплошной среды состоит в определении в этом многообразии состояния, реализуемого в принятой физической модели.  [c.25]

В способе Л. Б. Канторовича краевая задача для уравнения в частных производных (Пуассона) заменена краевой задачей теории обыкновенных дифференциальных уравнений. Но можно вообще избегнуть решения дифференциальных уравнений, а свести задачу к линейной алгебраической системе уравнений, задавая целиком форму решения и распоряжаясь неизвестными введенными в него постоянными. Например, полагаем для прямоугольника  [c.418]

Изложенные выше на простейшем примере соображения могут быть распространены и на более сложные задачи на уравнения более высокого порядка, на системы уравнений, на уравнения в частных производных. В последнем случае возможность их использования будет зависеть не только от свойств самого уравнения, но и от свойств того контура, на котором ставятся краевые условия.  [c.81]

Задача построения математически непротиворечивой теории оболочек, являющейся корректно разрешимой и обеспечивающей выполнение всех независимых физических краевых условий, связана с необходимостью отказа от всех упрощающих физических и геометрических гипотез и использованием математически строгих методов редукции уравнений теории упругости. Сюда можно отнести проекционный метод уменьшения размерности дифференциальных уравнений в частных производных, основанный на том, что любую непрерывную функцию можно равномерно приблизить полиномами (теорема Вейерштрасса). Он представляет собой обобщение классических приближенных методов (метода моментов, метода Бубнова—Галеркина и др.) в рамках функционального анализа [75].  [c.8]


Однако попытки использовать линеаризацию для решения задач устойчивости оболочек часто оказываются неудачными, так как обычный принцип линеаризации дает искаженное представление о критических нагрузках и формах. Оказалось, что его следует использовать, линеаризируя задачу в окрестности заранее неизвестного решения или же вообще отказаться от линеаризации и перейти к непосредственному глобальному исследованию нелинейных уравнений, описывающих деформацию оболочки. Так как эти соотношения представляют собой сложную систему уравнений в частных производных, содержащую параметр нагрузки X, проблема сводится к исследованию спектра некоторой нелинейной краевой задачи.  [c.137]

Многие важные практические проблемы в науке и технике сводятся к математическим моделям, которые принадлежат классу задач, известных как краевые задачи. Для любых краевых задач характерно наличие некоторой области R, лежащей внутри границы С. Реальная задача в области R моделируется дифференциальным уравнением в частных производных, решение которого отыскивается при определенных ограничениях — условиях, заданных на границе области. Если область R трехмерная, то С представляет собой ограничивающую ее поверхность в двумерных задачах R—плоская область, а С—ограничивающий ее контур.  [c.9]

Основным объектом математического исследования в теории пластичности являются нелинейные гиперболические системы дифференциальных уравнений в частных производных и краевые задачи для них, сформулированные для областей с неизвестными границами. Для нонимания содержания от читателя требуется достаточно свободное владение основами современной механики снлогпных сред, включая понимание тензорного формализма, а также — дифференциальной геометрии и теории уравнений с частными производными.  [c.7]

Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальпейи1ем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, по вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как. злектромагнитоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математической физики, В остальных главах книги (главы VI—VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется на примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации.  [c.2]

Одно из направлений развития теории уравнений в частных производных и соответствующих краевых задач связано с вариационными неравенствами, когда состояние объекта определяется не уравнениями, а неравенствами (см., например, [49]). При анализе управляемого процесса в этом случае удается в удобной форме описать поведение объекта во времени с учетом различных ограничений на фазовое состояние (см., например, [9]). Ряд важных результатов, относящихся к этому направлению теории управления колебаниями и ее приложений, представлены в книге V. Barbu [120.  [c.18]

Примечание. При рассмотрении этих примеров очевидна некоторая искусственность метода. Решение даже весьма простых задач опирается на использование некоторых специальных соотношений, становящихся бесполезными при сравнительно малом изменении условий задачи. Эта искусственность операторного способа является отражением искусственности других фективпых методов решения уравнений в частных производных с краевыми условиями, к которым в нестационарном случае добавляются еще и начальные условия.  [c.543]

Системы квазиканонических уравнений движения сплошной среды, составленные в предыдущих параграфах, не приспособлены к применению методов интегрирования, разработанных в аналитической механике систем с конечным числом степеней свободы. Главными препятствиями являются те особенности их строения, о которых шла речь выше. Конечно, дополнительные осложнения связаны также с тем, что эти уравнения являются уравнениями в частных производных и решение конкретной задачи требует удовлетворения краевым условиям.  [c.103]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

При решении краевых задач приближенные модели технических объектов можно строить на основе интегральных уравнений. При этом первый шаг на пути к ре-илению состоит в переходе от дифференциальных уравнений в частных производных к эквивалентным интегральным уравнениям. Во многих случаях, когда такой переход оказывается успешным, решение исходной задачи может быть получено с минимальными вычислительными затратами и высокой степенью точности. Кроме того, размерность исходной задачи понижается на 1, двухмерные задачи преобразуются в одномерные.  [c.60]

Для численного пптегрировагсия полученной системы уравнений разобьем выделенный объем среды точками г = (г=1, 2,. ... ... п) на и материальных частиц значения всех искомых функций будем определять в точках = г (i=l, 2,. .., п). Тогда четыре последних дифференциальных уравнения в частных производных по времени от иеремеп ых а,, а, w, р2 перейдут в Ап обыкновенных дифференциальны уравнения по времени, для численного интегрирования которых удобно использовать модифицированный метод Эйлера — Коши. Для определения значений давления р i в точках г = г. в к шдый фиксированный момент времени необходимо решать лине пую (для pi ) краевую задачу для первого дифференциального (по / ) уравнения второго порядка с краевыми условиями (6 7.17).  [c.53]


Эта система двух уравнений в частных производных содержит две искомые функции и х, у), v (х, у), для решения которой необходимо поставить соответствующие постановке конкретной задачи краевые условия. Такой путь решения называется реишнием в перемещениях. Другой путь решения, когда искомыми являются усилия Nx, Ny, Nxtj, называется решением в усилиях и состоит в следующем. Два уравнения равновесия (17.23) содержат три искомые функции Nx, Ny, Nxy, поэтому система уравнений (17.23) дополняется еще одним — уравнением совместности деформации. Исключим из линеаризованных выражений для деформации (16.14) функ-  [c.411]

Общие решения перечисленных уравнений в частных производных, в том числе нелинейных, не представляют физического решения. Для решения конкретных гидродинамических и тепловых задач следует сформулировать краевую задачу для указанных уравнений, т. е. задать краевые условия или условия однозначности. Задание краевых условий заключается в формулировке, во-первых, начальных условий, т. е. задании значений искомых функций в указанных уравнениях в начальный момент времени, который обычно прини-  [c.26]

При определении различных пространственно-временных полей необходимо находить решения краевых. задач для дифференциальных уравнений в частных производных в заданных областях изменения пространственных переменных и временных интервалах. Отличительной особенностью применения численных методов является дискретизация нросгранственной и временной областей на первом же этапе решения задачи. При дискретизации выбираются узловые точки в пространственной и временной областях. На втором этапе составляется система алгебраических уравнений относительно значений искомых функций в этих узловых точках. На третьем — проводится решение системы и находятся значения исследуемых величин в узловых точках. Отметим, что дискретизация области часто делается и при расчете на основе аналитических решений, однако в этих случаях она проводится на заключительных этапах, реализуемых уже после получения аналитического решения.  [c.69]

Заметим, что форма (1.40) есть аналитическое решение линейной задачи, а схема решения краевой задачи (1.46) — численное определение начальных и, если требуется, конечных параметров. Теоретически определение граничных параметров линейной системы из уравнения (1.46) можно выполнить аналитически, но целесообразней применять численный метод исключения Гаусса, т.к. трудности аналитического решения резко увеличиваются с ростом порядка матригцз А. Поэтому данное сочетание задачи Копти и численного решения краевой задачи позволяют определить предложенный одномерный вариант МГЭ как численно-аналитический метод решения дифференциальных уравнений независимо от физического содержания задачи. Если требуется решить задачу для линейной системы, состояние каждого элемента которой описывается обыкновенным дифференциальным уравнением, то всегда можно применить предложенный выше алгоритм. Если состояние элементов описывается дифференциальными уравнениями в частных производных(пластинчатые и оболочечные системы), то для применения одномерного варианта МГЭ нужны дополнительные преобразования, сводящие дифференциальные уравнения в частных производных к обыкновенным дифференциальных уравнениям. В математике, как известно, возможность понижения мерности исходной задачи существует. В механике такую процедуру выполняет вариационный метод, предложенный с разных позиций вьщающимися советскими учеными академиком Л.В. Канторовичем и членом-корреспондентом АН СССР В.З. Власовым, который носит их имя.  [c.390]

Расчет обаточек с использованием общей моментной теории связан с решением краевых задач и интегрированием сложной системы уравнений в частных производных. Широко известны численные способы решения этих уравнений. Приближенные теории построены на дополнительных упрощениях безмомент-ная теория оболочек теория краевого эффекта полубезмоментная теория цилиндрических оболочек теория пологих оболочек.  [c.151]

Метод внешних и внутренних разложений широко применяют в аналитических исследованиях краевых задач математической физики, описываемых эллиптическими системами дифференциальных уравнений в частных производных. Рассмотрим применение этого метода для вывода общих уравнений деформирования диск-ретно-армированного континуума (пространство, армированное оболочками или стержнями, оболочка, армированная стержнями) размерность армирующего тела предполагается меньшей размерности связующего материала. Строгая теория таких объектов представляет интерес в связи с изучением композиционных материалов.  [c.95]

Нестационарное поле малых скоростей, определяемое уравнениями (9), должно удовлетворять некоторым линеаризованным дифференциальным уравнениям в частных производных для возмущенного движения с обычными граничными условиями прилипания. Подставляя выражение (9) в эти уравнения, получим обыкновенные дифференциальные уравнения относительно неизвестных функций Uj, Ua, 3 с коэффициентами, зависящими от X и р. Далее находится фундаментальная система решений этих уравнений и при удовлетворении краевых условий составляется некоторое характеристическое уравнение, которое связывает А, и Р с числом Рейнольдса для данной задачи. При этом весь анализ сводится к определению знака Reel Р (действительной части параметра нарастания возмущений Р). Если Reel Р <0, то основное движение, определяемое формулой (8), устойчиво по отношению к возмущениям, определяемым формулами (9) если Reel р > О, то оно неустойчиво.  [c.18]

В приложении обсуждаются свойства интегралов дифференциальных уравнений в частных производных с двумя независимыми переменными и предлагаются асимптотические методы построения этих интегралов. Показывается также, как из них можно составить решение некоторых краевых задач типа Дирихле, близких по смыслу к краевым задачам теории оболочек.  [c.469]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]

Задачи механики сплошных сред сводятся,к дифференци--альным уравнениям в частных производных, которые необходимо интегрировать при определенных краевых условиях. Приближенное решение краевых задач во многих случаях удается получить с применением так называемых прямых методов. По определению С. Л. Соболева, прямыми называются такие методы приближенного решения задач теории дифференциальных и интегральных уравнений, которые сводят эти задачи к конечным систейам алгебраических уравнений. В теории и практике применения прямых методов особое место занимают два метода метод Ритца и метрд Галеркина.  [c.153]

Особо следует отметить работу 3. С. Аграновича, В. А. Марченко, В. П. Шестопалова [89], в которой по существу определены основные направления в решении проблем резонансного рассеяния волн периодическими дифракционными решетками. К моменту ее появления было ясно, что основным средством электродинамического анализа в резонансной области частот должен стать численный эксперимент. Необходимо только так переформулировать исходную краевую задачу для дифференциального уравнения в частных производных, чтобы можно было эффективно использовать вычислительную технику с прогнозируемой погрешностью и в реальном масштабе времени получать необходимые результаты. В [891 реализована схема, отработанная в рамках классического функционального анализа. Путем выделения и обраш,ения (метод полуобраш,ения, левая регуляризация) статической части задача сведена к канонической фредголь-мовой. На этом формально ее решение можно считать законченным, так как для операторных уравнений фредгольмового типа из единственности следует существование решения, а свойства компактности обеспечивают сходимость вычислительных процедур, основанных на редукции бесконечных систем линейных алгебраических уравнений [90].  [c.8]


Итак, установлена замкнутая система линейных однородных уравнений устойчивости слоистых композитных оболочек. Записанная в вариациях обобщенных перемещений система состоит из пяти дифференциальных уравнений в частных производных с двумя независимыми переменными j S относительно пяти искомых функций и , и . И", TTj. Ее порядок от числа слоев оболочки не зависит и равен 12, что соответствует количеству задаваемых для нее краевых условий (3.3.6). Зависимость коффициентов этих уравнений от параметра внешних нагрузок проявляется через характеристики основного состояния (перемещения, деформации, усилия) и в общем случае нелинейна. Задача заключается в определении таких значений этого параметра, при которых линейная однородная система уравнений устойчивости, подчиненная надлежащим однородным краевым условиям, допускает нетривиальное решение. Этими значениями параметра нагрузок определяются критические точки, которые, согласно существующей классификации [45, 51 ], могут быть двух типов — точки бифуркации и предельные точки. При переходе через точку бифуркации может теряться устойчивость по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной равновесой формы к другой [45, 51 ].  [c.61]

Рассмотрим задачу об устойчивости равновесия упругой слоистой анизотропной оболочки вращения, нагруженной осесимметричной системой внешних сил, интенсивности которых пропорциональны одному параметру. Докритическое равновесное состояние оболочки определяем на основе линеаризованных уравнений статики, а его устойчивость исследуем в рамках статической концепции Эйлера о разветвлении фop равновесия, позволяющей трактовать (см. параграф 3.3) задачу устойчивости как линейную краевую задачу на собственные значения для системы дифференциальных уравнений с частными производными. Решение этой задачи строим в форме тригонометрических рядов Фурье по угловой координате (см. параграф 3.6) с коэффициентами, зависящими от меридиональной координаты. Отделяя угловую координату и вводя 2х-мерный вектор j>(x) вариаций безразмерных кинематических и силовых характеристик напряженно-деформированного состояния оболочки (см. параграф 3.6), приходим к линейной краеюй задаче на собственные значения для системы обыкновенных дифференциальных уравнений, которую запишем в векторной форме  [c.205]


Смотреть страницы где упоминается термин Уравнения в частных производных и краевые задачи : [c.31]    [c.273]    [c.200]    [c.26]    [c.65]   
Смотреть главы в:

Стохастические уравнения и волны в случайно-неоднородных средах  -> Уравнения в частных производных и краевые задачи



ПОИСК



I краевые

Задача краевая

К п частный

Производная

Производная частная

Уравнение в частных производных

Частные задачи

Частные производные



© 2025 Mash-xxl.info Реклама на сайте