Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжева и гамильтонова формы уравнений движения

Перейдем теперь к мемуару Второй очерк об общем методе в динамике . После вводных замечаний, описывающих общее содержание мемуара, Гамильтон обращается к установлению новой формы уравнений движения системы свободных материальных точек в произвольной криволинейной системе координат gi, дг. 9зп Отправляясь от принципа Даламбера, он устанавливает уравнения Лагранжа и, вводя в них вместо производных Qi, qtf-T qsn новые переменные pi, рг,---, Рзп о формулам  [c.12]


Вариационный принцип Гамильтона и уравнения движения в форме Лагранжа и Аппеля. Некоторые интегрируемые задачи.  [c.190]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

При доказательствах интегральных принципов вводятся частные предположения о свойствах сил, действующих на точки системы, и свойствах связей. Но и здесь были получены из принципов М. В. Остроградского уравнения движения систем с голо-номными связями в форме уравнений Лагранжа второго рода, а из принципа Гамильтона — Остроградского — система канонических уравнений движения.  [c.210]

Согласно уравнениям движения в форме Лагранжа вариационный принцип Гамильтона в динамике точки принципа относительности имеет вид  [c.347]

Преобразование Пуассона и Гамильтона. В конце первого тома, в п. 291 и в следующих, мы видели, как можно преобразовать уравнения движения точки, взятые в форме Лагранжа, к форме, названной канонической.  [c.364]

Прямые пути, т. е. истинные движения при заданной функции L, могут быть охарактеризованы как при помощи дифференциальных уравнений движения в форме Лагранжа, так и при помощи вариационного принципа Гамильтона. Однако между дифференциальными уравнениями движения и вариационными принципами имеется одно принципиальное различие.  [c.106]


В главе 6 указывалось, что первый член ковариантного релятивистского лагранжиана (6.57) является в некоторой степени произвольным. Другая возможная форма лагранжиана получается, если преобразовать принцип Гамильтона (6.48) (перейдя от времени i к местному времени т, являющемуся инвариантом Лоренца) и использовать. новую подынтегральную функцию в качестве L. Получить таким путем выражение для ковариантного гамильтониана частицы, находящейся в электромагнитном поле. Показать, что значение этого гамильтониана равно нулю. (При получении уравнений движения значение гамильтониана, конечно, не существенно, так как нас интересует только его функциональная зависимость от координат и импульсов.)  [c.261]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Гамильтон предложил записывать уравнения движения в переменных Qi, pi t. В этих переменных уравнения Лагранжа (1) переходят в разрешенную относительно производных систему 2п уравнений первого порядка, имеющую замечательно симметричную форму записи. Эти уравнения называют уравнениями Гамильтона (или каноническими уравнениями). Переменные qi и р (г = 1, 2,. .., п) называются канонически сопряженными.  [c.284]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]

Это — уравнения движения в форме Гамильтона их называют также каноническими уравнениями. Переход от лагранжевых уравнений к уравнениям Гамильтона — чисто математический процесс, не имеющий никакого отношения к исходной динамической системе. Для любой системы, описываемой уравнениями Лагранжа в форме (46.18), будут иметь место уравнения Гамильтона в  [c.129]


Но мы могли потребовать большего. Мы можем стремиться не только к пониманию математической структуры некоторой отдельной динамической проблемы, но к пониманию математической структуры класса проблем столь широкого, что в конце концов мы можем считать всю динамику находящейся в поле нашего зрения. Мы будем рассматривать те системы, для которых имеют место уравнения движения в форме Лагранжа или в форме Гамильтона этот класс и в самом деле включает очень широкий круг проблем.  [c.197]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Обобщенные уравнения Пуанкаре. Пуанкаре [1] и Четаев 3-5] использовали принцип Гамильтона для вывода уравнений движения, тогда как Четаев [6] использовал также принцип Даламбера-Лагранжа в его традиционной форме  [c.9]

В 28 показано, что уравнения Лагранжа (28.11) инвариантны относительно точечного преобразования (28.17), связывающего любые два набора обобщенных координат системы д, Q. Разумеется, что при любом преобразовании (28.17) сохраняют свою форму и канонические уравнения движения (33.4). Однако уравнения Гамильтона допускают более широкий класс преобразований. Это связано с тем, что в методе Гамильтона роль независимых переменных наряду с обобщенными координатами выполняют и обобщенные импульсы р . Поэтому преобразования, сохраняющие форму канонических уравнений движения (33.4), относятся к классу преобразований  [c.198]

Наиболее существенно здесь, по-видимому, то, что последовательное развитие теории интегрирования составленных Гамильтоном уравнений движения консервативных систем, отличающихся лишь по форме от уравнений Лагранжа второго рода, позволило установить связь между процессами, протекающими в дискретных системах и непрерывной среде, в первую очередь между механическими движениями и оптическими явлениями. Это обстоятельство отмечает в своей книге Лан-цош [76].  [c.6]

В работах [18, 78], исходя из вариационного принципа Гамильтона — Остроградского, построены однородные уравнения Эйлера — Лагранжа для сплошной среды. Эти уравнения напоминают по форме уравнения Лагранжа второго рода, описывающие движение систем материальных точек.  [c.148]

Уравнения движения в форме Лагранжа и Гамильтона, соответственно, имеют вид  [c.233]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

В рассмотрении первой половины основной задачи механики мы не будем повторять исторического пути, который шел через последовательные обобщения постепенно накоплявшихся опытных фактов (заметим только, что основные заслуги в установлении физических основ механики принадлежат Галилею и Ньютону, а в разработке ее математической формы — Лагранжу и Гамильтону), а сразу сформулируем чрезвычайно общий принцип, который называется принципом наименьшего действия и позволяет очень изящным и компактным образом выяснять, какие именно ограничения на вид уравнений движения налагают определенные физические требования.  [c.16]


Ирландский математик Гамильтон указал способ приведения дифференциальных уравнений Лагранжа к нормальному виду, дающий симметричные, т. е. одинаковые по форме уравнения относительно разных переменных, входящих в них. Эти дифференциальные уравнения получили название канонических дифференциальных уравнений движения. Они называются также уравнениями Гамильтона.  [c.202]

Для установления принципа стационарного действия использованы уравнения Лагранжа второго рода. Если же исходить из принципа стационарного действия, то на его основе можно установить все основные теоремы механики консервативных систем и получить дифференциальные уравнения движения в форме уравненнй Лагранжа второго рода. Установим зависимость между действием по Гамильтону 5 и действием по Лагранжу  [c.592]

Функции Лагранжа и Гамильтона не являются единственно возможными дескриптивными функциями, хотя они и являются, конечно, наиболее важными. Из шестой формы основного уравнения можно получить и другие формы уравнений движения. Так, например, уравнение можно нанисать в виде  [c.270]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Уравнения такого вида впервые применялись в работах Лагранжа и Пуассона по небесной механике. Трактовка их как общей формы уравнений движения механических систем под действием потенциальных сил была дана позднее Гамильтоном (для систем свободных точек), Якоби (для систем со стационарными связями), Остроградским и Донкином (для систем с нестационарными, вообще говоря, связями). Для нас основой такой трактовки послужит  [c.129]

Говоря о различных формах уравнений вихревого движения жидкости, можно отметить полезные преобразования уравнений гидродинамики, рассмотренные в 50-х годах А. Клебшем и в 60-х годах Г. Вебером Уравнение Клебша представляет некоторое обобщение интеграла Бернулли, имеющее определенную аналогию с каноничсескими уравнениями Гамильтона, а преобразование Вебера дает видоизмененную форму уравнений движения в так называемых переменных Лагранжа.  [c.75]

Новая форма уравнений движения элемента сплошной среды дала возможность выразить компоненты тензора Гамильтона через квазиплотность функции Лагранжа. Свертывание этого тензора позволило найти плотность функции Гамильтона. Однако этот процесс привел к выражению плотности (квазиплотности) функции Гамильтона, встречающемуся в монографиях по континуальной механике, где плотность функции Гамильтона вводится посредством определения. Путем обобщения классической методики найдены системы квазиканонических и канонических уравнений динамики сплошной среды. Указаны естественные краевые условия.  [c.4]

Вместо принципа наименьшего действия можно представить другой принцип, который также состоит в том, что первая вариация некоторого интеграла обращается в нуль, и из которого можно получить дифференциальные уравнения движения еще более просто, чем из принципа наименьшего действия. Этот принцип раньше оставался незамеченньш, вероятно, потому, что здесь вместе с исчезновением вариации вообще не получается минимум, как это имеет место для принципа наименьшего действия. Гамильтон был первым, исходившим из этого принципа. Мы воспользуемся этим принципом для того, чтобы представить уравнения движения в той форме, которую им дал Лагранж в аналитической механике. Пусть, прежде всего.  [c.307]

Сопоставление принципа Гамильтона с принципом наименьшего действия Эйлера—Лагранжа показывает, что первый допускает более широкое обобщение. Принцип Гамильтона является наиболее общей и абстрактной формой изложения физической сущности лгеханики. Почти для всех разделов физики можно найти вариационные принципы, которые приведут к соответствующим уравнениям движения при таком построении теории этих отделов физики будут характеризоваться известной структурной аналогией, имеющей серьезную познавательную ценность.  [c.865]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Принцип Гамильтона, рассматриваемый как вариационный принцип стационарного действия, справедлив только для голономных систем. Невозможность непосредственного распространения интегральных принципов, установленных для голономных систем, на неголоном-ные системы была отмечена ещё Герцем [27]. Он обратил внимание на то, что не всякие две точки конфигурационного пространства могут быть соединены траекторией системы с неинтегрируемой дифференциальной связью. Первым, кто предложил интегральный принцип, пригодный для неголономных систем, по-видимому, был Гёльдер его принцип имеет форму интегрального равенства, не являющегося условием стационарности функционала он был получен при предположении перестановочности операций d w 5 (см. заметку 16). При этом, во-первых, варьированные траектории не удовлетворяют уравнениям неголономных связей, и во-вторых, уравнения движения неголономной системы не совпадают с уравнениями Эйлера вариационной задачи Лагранжа. Обсуждению этих двух вопросов посвящена обширная литература с начала двадцатого века и до настоящего времени. Приведём некоторые результаты [101.  [c.142]

В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


Лагранж (Lagrange) Жозеф Лг/ (1736-1813) — выдающийся французский математик и механик, В1754 г. стал профессором артиллерийской школы. Основатель знаменитой Туринской академии. В 1766-1787 гг. преподавал в Берлинской академии наук. В 1787 г. переехал в Париж, где до конца жизни был профессором Нормальной школы и Политехнической школы. В 1788 г, издал знаменитую книгу Аналитическая механика , которую У. Р. Гамильтон назвал научной поэмой . Развил основные понятия вариационного исчисления и предложил общий аналитический метод для решения вариационных задач. Придал уравнениям движения форму, названную его именем, В Аналитической механике значительное место занимают вопросы механики сплошной среды (гидростатика, гидродинамика, теория упругости). Автор ряда фундаментальных работ по математическому анализу, теории чисел, алгебре, астрономии, картографии и др.  [c.38]

Если уравнения движения диссипативных систем свести к гамильтоновой форме, то можно воспользоваться известными методами для исследования диссипативных систем. Это, в частности, позволит указать один из способов обоснования построения кинетического уравнения для непотенциальных систем и построить континуальную модель двухкомпонентного потока. Для этого в первую очередь необходимо построить обобщенную функцию Гамильтона Н (соответственно обобщенную функцию Лагранжа L ), которая учитывала бы диссипативные 9илы и давала бы возможность представить канонические уравнения движения в гамильтоновой форме.  [c.157]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

Задаем вид обобщенной функции Лагранжа (Гамильтона), зависящей от искомых функций, предполагая, что уравнения движения, определяемые обобщенной функцией Лагранжа, являются уравнениями Лагранжа второго рода с нулевой правой частью (канонические уравнения имеют гамильтонову форму). Отождествляя полученные уравнения и уравнения движения непотенциальиой системы, находим систему дифференциальных уравнений для определения неизвестных функций. Решая эту систему, находим искомые функции, а затем определяем явный вид обобщенных функций Лагранжа и Гамильтона и преобразования переменных.  [c.160]

Задача п точечных вихрей. Не следует думать, ч. уравнения Гамильтона появляются в механике лишь в результате применения к уравнениям Лагранжа преобразования Лежандра. Рассмотрим плоское стационарное течение идеальной несжимаемой жидкости. Пусть v=(a x, у), Ь х, i/))—поле скоростей ее частиц в декартовых координатах х, у. Из условия несжимаемости divt = 0 следует, что 1-форма ady—bdx является дифференциалом некоторой функции Yix, у). Уравнение движения частицы жидкости можно представить тогда в виде уравнения Гамильтона  [c.36]

Общая форма уравнений небесной мехтники (377) — 2. Обобщ нные координаты (378) — 3. Уравнения Лагранжа (379) — 4. Выражение для живой силы в обобщенных координатах (383) — 5. Случай, когда силы имеют силовую фунлпию (384) — 6. Вывод уравнений Лагранжа из принципа Гамильтона (384) —7. Преобразование уравнений движения к полярным координатам (385).  [c.15]

Л 1п + - 1 . (106), Предположим, далее, что все величины д Рг р рд X X ехр [(еу —е,)/Л7 ]1 и ( у/ /) ехр [(е — ег)/ Т 21 близки к единице, так что членами, содержащими квадраты их отклонений от единицы, можно пренебречь. Тогда можно показать [5], что -необходимым и достаточным условием того, чтобы система соответствовала минимуму возникновения энтропии, является обращение в нуль всех йр11(И и в уравнениях (3). При этих условиях множитель Лагранжа р.. учитывающий условие (2), обратится в нуль. Заметим, что сделанные нами предположения означают, что газ в обоих сосудах находится вблизи равновесия и, кроме того, что разность температур 17=7 —Г, мала по сравнению со средней температурой тепловых резервуаров. Заметим также, что мы рассматривали определенную систему уравнений движения , так что наша процедура минимизации не является аналогичной. скажем, использованию принципа Гамильтона в динамике. Отметим, кроме того, что для стационарного состояния скорость возникновения энтропии записывается в следующей простой форме  [c.216]


Смотреть страницы где упоминается термин Лагранжева и гамильтонова формы уравнений движения : [c.460]    [c.99]    [c.548]    [c.302]    [c.18]    [c.227]    [c.187]   
Смотреть главы в:

Теория упругости Изд.2  -> Лагранжева и гамильтонова формы уравнений движения



ПОИСК



Вариационный принцип Гамильтона и уравнения движения в форме Лагранжа и Аппеля. Некоторые интегрируемые задаСилы инерции

Гамильтон

Гамильтона уравнения

Гамильтона уравнения движения

Гамильтонова форма

Зэк гамильтоново

Лагранжа движения

Лагранжа уравнение движения

Лагранжа форма уравнений движения

Лагранжево движения

Первая форма принципа Гамильтона. Лагранжевы уравнения движения

Уравнения Лагранжа

Уравнения Лагранжа и Гамильтона

Уравнения для в форме Лагранжа

Уравнения форме

Форма уравнением в форме

Форма уравнений движения гамильтонов



© 2025 Mash-xxl.info Реклама на сайте