Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первая форма принципа Гамильтона. Лагранжевы уравнения движения

В главе 6 указывалось, что первый член ковариантного релятивистского лагранжиана (6.57) является в некоторой степени произвольным. Другая возможная форма лагранжиана получается, если преобразовать принцип Гамильтона (6.48) (перейдя от времени i к местному времени т, являющемуся инвариантом Лоренца) и использовать. новую подынтегральную функцию в качестве L. Получить таким путем выражение для ковариантного гамильтониана частицы, находящейся в электромагнитном поле. Показать, что значение этого гамильтониана равно нулю. (При получении уравнений движения значение гамильтониана, конечно, не существенно, так как нас интересует только его функциональная зависимость от координат и импульсов.)  [c.261]


Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Подобные общие принципы, в которых выставляется требование, чтобы интеграл некоторой функции состояния, распространенный на время, в течение которого происходит изменение состояния, имел экстремальное значение, иногда обязательно минимальное, выдвигались неоднократно. Эти принципы имели различную форму, соответствующую тем или другим условиям, налагаемым на варьирование, но при правильном выполнении требуемых варьирований все эти принципы приводят к одним и тем же дифференциальным уравнениям для рассматриваемых процессов. Первым из этих интегральных принципов был предложенный Мопертюи принцип наименьшего действия, в котором утверждалось, что при всех происходящих в природе явлениях среднее значение живой силы имеет минимальное значение. Условия варьирования, имеющие при этом место для механических задач, найдены только Лагранжей, и тем самым этот принцип был только им научно обоснован. Эти условия с современной точки зрения могут быть выражены требованием, чтобы полная энергия варьированного движения оставалась равной полной энергии действительного движения. Впрочем, к тем же результатам приводит принцип Гамильтона, при котором имеет место другое условие, а именно, что время не затрагивается варьированием. Это последнее условие имеет то преимущество, что мы имеем возможность присоединить к Я добавочные члены, относящиеся к внешним силам. Поэтому мы оставляем форму Гамильтона, которая теперь при сохранении прежнего условия варьирования гласит  [c.465]


В рассмотрении первой половины основной задачи механики мы не будем повторять исторического пути, который шел через последовательные обобщения постепенно накоплявшихся опытных фактов (заметим только, что основные заслуги в установлении физических основ механики принадлежат Галилею и Ньютону, а в разработке ее математической формы — Лагранжу и Гамильтону), а сразу сформулируем чрезвычайно общий принцип, который называется принципом наименьшего действия и позволяет очень изящным и компактным образом выяснять, какие именно ограничения на вид уравнений движения налагают определенные физические требования.  [c.16]

Вместо принципа наименьшего действия можно представить другой принцип, который также состоит в том, что первая вариация некоторого интеграла обращается в нуль, и из которого можно получить дифференциальные уравнения движения еще более просто, чем из принципа наименьшего действия. Этот принцип раньше оставался незамеченньш, вероятно, потому, что здесь вместе с исчезновением вариации вообще не получается минимум, как это имеет место для принципа наименьшего действия. Гамильтон был первым, исходившим из этого принципа. Мы воспользуемся этим принципом для того, чтобы представить уравнения движения в той форме, которую им дал Лагранж в аналитической механике. Пусть, прежде всего.  [c.307]

Сопоставление принципа Гамильтона с принципом наименьшего действия Эйлера—Лагранжа показывает, что первый допускает более широкое обобщение. Принцип Гамильтона является наиболее общей и абстрактной формой изложения физической сущности лгеханики. Почти для всех разделов физики можно найти вариационные принципы, которые приведут к соответствующим уравнениям движения при таком построении теории этих отделов физики будут характеризоваться известной структурной аналогией, имеющей серьезную познавательную ценность.  [c.865]

Принцип Гамильтона, рассматриваемый как вариационный принцип стационарного действия, справедлив только для голономных систем. Невозможность непосредственного распространения интегральных принципов, установленных для голономных систем, на неголоном-ные системы была отмечена ещё Герцем [27]. Он обратил внимание на то, что не всякие две точки конфигурационного пространства могут быть соединены траекторией системы с неинтегрируемой дифференциальной связью. Первым, кто предложил интегральный принцип, пригодный для неголономных систем, по-видимому, был Гёльдер его принцип имеет форму интегрального равенства, не являющегося условием стационарности функционала он был получен при предположении перестановочности операций d w 5 (см. заметку 16). При этом, во-первых, варьированные траектории не удовлетворяют уравнениям неголономных связей, и во-вторых, уравнения движения неголономной системы не совпадают с уравнениями Эйлера вариационной задачи Лагранжа. Обсуждению этих двух вопросов посвящена обширная литература с начала двадцатого века и до настоящего времени. Приведём некоторые результаты [101.  [c.142]


Смотреть страницы где упоминается термин Первая форма принципа Гамильтона. Лагранжевы уравнения движения : [c.460]   
Смотреть главы в:

Классическая динамика  -> Первая форма принципа Гамильтона. Лагранжевы уравнения движения



ПОИСК



Гамильтон

Гамильтона уравнения

Гамильтона уравнения движения

Гамильтонова форма

ДВА V УРАВНЕНИЯ ДВИЖЕНИЯ ЛАГРАНЖА Принцип Гамильтона

Зэк гамильтоново

Лагранжа движения

Лагранжа уравнение движения

Лагранжа уравнения первого род

Лагранжа форма уравнений движения

Лагранжева и гамильтонова формы уравнений движения

Лагранжево движения

Принцип Гамильтона

Принцип Лагранжа

Уравнения Лагранжа

Уравнения Лагранжа и Гамильтона

Уравнения для в форме Лагранжа

Уравнения форме

Форма уравнением в форме

Форма уравнений движения гамильтонов



© 2025 Mash-xxl.info Реклама на сайте