Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Остроградского уравнение

При доказательствах интегральных принципов вводятся частные предположения о свойствах сил, действующих на точки системы, и свойствах связей. Но и здесь были получены из принципов М. В. Остроградского уравнения движения систем с голо-номными связями в форме уравнений Лагранжа второго рода, а из принципа Гамильтона — Остроградского — система канонических уравнений движения.  [c.210]


Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение колебаний струны.  [c.377]

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение малых колебаний подвешенной за один конец нити.  [c.377]

Пользуясь принципом Гамильтона — Остроградского, составить дифференциальное уравнение продольных колебаний тонкого стержня, заделанного на одном конце и с массой т на другом конце, и получить граничные условия. Плотность материала стержня р, модуль продольной упругости Е, площадь поперечного сечения Р, длина I,  [c.377]

Коэффициенты диффузии D, теплопроводности X и термоградиентный коэффициент 6 зависят от влажности и температуры. Учитывая это, можно получить систему нелинейных дифференциальных уравнений в частных производных, решение которой представляет большие трудности. Если эти коэффициенты считать постоянными и воспользоваться выражением закона переноса жидкости и преобразованием Остроградского — Гаусса, то дифференциальное уравнение переноса жидкости можно написать так  [c.507]

Интегральным соотношениям (1.1.9) после применения формулы Гаусса — Остроградского соответствуют дифференциальные уравнения импульсов каждой составляющей  [c.16]

Интегральным соотношениям (1.1.19) после применения формулы Гаусса — Остроградского соответствуют дифференциальные уравнения энергии составляющих  [c.18]

Принимая во внимание (2.2.12), преобразуем поверхностный интеграл в объемный по теореме Гаусса — Остроградского и, учитывая, что это уравнение справедливо для произвольного макроскопического объема V, получим формулу  [c.70]

Некоторый интерес представляют интегралы от дивергентных уравнений (1.2). Рассматривается четырехмерный объем W, ограниченный трехмерной поверхностью 5, определяемой уравнением f t,x,y,z) = 0. Интегрирование уравнения (1.2) по этому объему с использованием формулы Остроградского дает  [c.27]

Это уравнение называется уравнением Остроградского — Якоби.  [c.382]

Теорема Остроградского — Якоби, на которой основывается предложенный ими метод, формулируется так если известен полный интеграл уравнения Остроградского — Якоби, то 2s независимых интегралов канонической системы уравнений (132.5) имеют следующий вид  [c.382]


Подставляя (140.3) в уравнение (140.1), получаем уравнение Остроградского — Якоби для определения W, не содержащее времени t  [c.385]

Найти канонические уравнения движения материальной точки и уравнение ее движения, применив метод интегрирования Остроградского — Якоби.  [c.385]

Пример 93. Материальная точка массой т движется под действием силы притяжения к некоторому центру О. Зная, что силовая функция поля равна U (г), где /- — расстояние от точки до центра О, найти канонические уравнения и уравнения ее движения, применив метод интегрирования Остроградского—Якоби, Решение. Выберем за обобщенные координаты материальной точки ее полярные координаты г и ф. Так как составляющие скорости точки, выраженные н полярных координатах, определяются по формулам  [c.387]

Тогда полный интеграл уравнения Остроградского—Якоби имеет вид  [c.387]

Пример 94. Материальная точка массой т движется в однородном поле силы тяжести. Найти методом Остроградского—Якоби траекторию точки и уравнение ее движения.  [c.388]

Какой вид имеет уравнение Остроградского —Якоби  [c.390]

Как по методу Остроградского—Якоби получаются интегралы канонической системы уравнений  [c.390]

Какой вид имеет уравнение Остроградского—Якоби в случае, когда функция Гамильтона явно от времени не зависит  [c.390]

Это уравнение выражает принцип Гамильтона —Остроградского действительное движение механической системы с голономными двусторонними идеальными связями отличается от всех иных возможных ее движений, удовлетворяющих условию (144.2) тем, что только для  [c.396]

В TOM случае, если система находится только под действием консервативных сил и при этом концы временного интеграла ti и 4 не варьируются, т. е. 8ti = 8t2 = 0, уравнение принципа Гамильтона — Остроградского принимает вид  [c.397]

ВЫВОД УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА ИЗ ПРИНЦИПА ГАМИЛЬТОНА — ОСТРОГРАДСКОГО  [c.405]

Уравнения Лагранжа второго рода могут быть получены из уравнений Эйлера (145.9) и непосредственно на основе уравнения (144.3), выражающего принцип Гамильтона — Остроградского. Так как  [c.405]

Покажем, как исходя из принципа Гамильтона — Остроградского, получить уравнения Лагранжа второго рода. Пусть qi(t), <72(0. . (О обобщенные координаты, соответствующие прямому пути консервативной голономной механической системы. Рассмотрим окольный путь, определяемый функциями г+б г,. ... .., js- 6qs. Тогда, с точностью до членов первого порядка малости по сравнению с бдт и б т, будем иметь  [c.215]

Итак, показано, что из принципа Гамильтона — Остроградского можно получить уравнения движения, а из уравнений движения — принцип Гамильтона — Остроградского. Из этого следует, что этот принцип может быть положен в основу механики голономных консервативных систем ).  [c.218]

Из принципа Гамильтона — Остроградского можно получить и канонические уравнения Гамильтона. Действительно, из выражения (5.6) для функции Гамильтона  [c.218]

Неголономные связи — это связи совершенно иного типа. Их существование впервые отметил М. В. Остроградский. Он же первый вывел уравнения движения неголономных систем, правда, в недостаточно удобной для практического применения форме.  [c.427]

Следовательно, принцип Гамильтона — Остроградского является условие М не только необходимым, но и достаточным для существования уравнений движения (65.41).  [c.102]

Подставляя выражения (9.72), (9.73) в вариационное уравнение (9.70), учитывая формулы (9.31), (9.32) и формулу преобразования Грина — Остроградского  [c.204]

Заметим, что Ж. Лагранж рассматривал только связи, аналитически определяемые уравнениями, т. е. двусторонние связи. М. В. Остроградский рассматривал как голономные, так и неголономные связи. В некоторых случаях М. В. Остроградский применял особые системы локальных координат, известные теперь под названием квазикоординат .  [c.37]

М. В. Остроградский распространил методы аналитической механики на теорию соударений твердых тел, применив развитую мм теорию движения систем с нестационарными связями. М. В. Остроградскому принадлежит открытие, независимо от К. Якоби, особого метода интегрирования уравнений динамики. Наконец, еще раз напомним, что М. В. Остроградский независимо  [c.37]


Пользуясь принципом Гамильтона — Остроградского, составить дифференциальное уравнение поперечных колебаний шарнирно опертой балки, а также получить граничные условия. Плотность материала балки р, модуль продольной упругости Е, площадь поперечного сечения Е, момент ииерцип поперечного сечения У, длина балки I.  [c.378]

Пользуясь принципом Гам [ль-топа — Остроградского, составить уравнения малых колебаний системы, состоя-птей из консольной балки длины / и груза массы т, прикрепленного к балке и к основанию пружинами жесткости с. Плотность материа.яа балки р, модуль продольной упругости Е, площадь поперечного сечения Е, момент инерции поперечного сечения У.  [c.378]

Ог ингегральной формы уравнения неразрывносли для объема можно переЙ1и к уравнению неразрывности в каждой гочке пространства. Для этого следует интеграл по поверхности в (1) преобразовать в интеграл по объему, ограниченному замкну гой поверхностью, по формуле Гаусса -Остроградского  [c.559]

М. в. Остроградскии и независимо от него Якоби разработали метод, применение которого к нахождению интегралов канонической системы уравнений (132.5) во многих случаях оказывается проще непосредственного интегрирования зтой системы уравнений.  [c.382]

Метод Остроградского — Якобн позволяет свести задачу об отыскании 2s первых интегралов дифференциальных уравнений кано-иической системы (132.5) к задаче определения полного интеграла некоторого уравнения с частных производных первого порядка.  [c.382]

Такпм образом, 1 3 теоремы Остроградского — Якоби следует, что в том случае, если известен Юлн1з1Й интеграл уравнения Остроградского — Якоби, то перемен ые q и ру определяются как функции времени t и 2s произвольных постоянных а , о,. .., Pj, Ра, Ps ИЗ уравнений (139.3) и (139.4), представляющих собой ПО отношению к q, и р/ систему алгебраических уравнений.  [c.384]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Теперь, на основании теоремы Остроградского — Якоби, пользуясь формулами (139.3) и (139.4), можно составить полную систему независимых интегралов канонических уравнений движ тгия  [c.385]

Покажем теперь, как исходя из уравнений Лагранжа второго рода, можно прийти к принципу Гамильтона — Остроградского. Умножая каждое из уравнений (8.8) иа соответствующую вариацию ба,,,. и складывая между собой полученные выражения, нп1дем, что  [c.217]

Рассмотрим обратную задачу. Принимая аксиоматически принцип Гамильтона — Остроградского, получим из него уравнения движения (65.41). Так как  [c.101]

Относительная краткость курса потребовала щателыюго отбора теоретического материала и примеров, поясняющих основные разделы курса. В курс включен ряд дополнительных разделов, В динамике достаточно полно изложена общая теория малых колебании механических систем с одной н двумя степенями свободы. В аналитическом динамике даны канонические уравнения Гамильтона и принцип Остроградского—Гамильтона. Расширена глава Динамика твердого тела с одной закрепленной точкой . Наряду с приближенной теорией гироскопа дополнительно изложена точная теория гироскопического момента при регулярной прецессии. В специальных главах изложены также элементы теории искусственных спутников и основные сведения по движению точки переменной массы.  [c.3]


Смотреть страницы где упоминается термин Остроградского уравнение : [c.31]    [c.3]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.403 ]



ПОИСК



Вывод канонических уравнений Гамильтона из принципа Гамильтона — Остроградского

Вывод канонических уравнений механики из принципа Гамильтона— Остроградского

Вывод уравнений Лагранжа по вариационному принципу Гамильтона—Остроградского

Вывод уравнения Лагранжа второго рода из принципа Гамильтона—Остроградского

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения как следствие принципа Гамильтона— Остроградского при расширенном способе варьирования

Квазиканонические уравнения как следствие принципа Гамильтона— Остроградского. Естественные краевые условия

Остроградский

Остроградский. Дифференциальные уравнения проблемы изопериметров (перевод Н. И. Идельсона)

Остроградского метод интегрировани уравнение

Остроградского метод интегрирования канонических уравнений

Остроградского метод уравнение

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского

Уравнение Бернулли Остроградского

Уравнение Остроградского — Гамильтон

Уравнение Остроградского — Гамильтона — Якоби

Уравнение Остроградского — Гамильтона — Якоби преобразование Крылова

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Уравнение Остроградского—Якоби

Уравнение бигармоннческое Эйлера Л.- Остроградского



© 2025 Mash-xxl.info Реклама на сайте