Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Главная функция

Программы управления данными. Программы управления данными в ОС ЕС реализуют различные способы организации наборов данных (в ОС ЕС употребляется термин набор данных ) и с помощью различных методов осуществляют операции обмена информацией между ОП и ВУ. Главная функция программ управления данными — выполнение операций обмена.  [c.117]

Главная функция Гамильтона  [c.368]

ГЛАВНАЯ ФУНКЦИЯ ГАМИЛЬТОНА  [c.369]

Здесь впервые обнаруживается соответствие между главной функцией Гамильтона и производящей функцией V канонических преобразований, превращающих все обобщенные координаты в циклические. Однако соответствия между равенствами  [c.370]


Было показано, что при известном законе движения материальной системы можно построить функцию W. Теперь поставим обратную задачу, найдя функцию W без предварительного определения закона движения, найти закон движения материальной системы. Для этого докажем, что главная функция Гамильтона удовлетворяет уравнению (11.350) с частными производными первого порядка, т. е. уравнению Остроградского — Гамильтона — Якоби. Ради краткости это уравнение далее будем называть уравнением Остроградского.  [c.371]

СКОРО — Гамильтона— Якоби, доказанную иным способом в 124. Вместе с этим доказано совпадение главной функции Ш, Гамильтона и производящей функции V канонических преобразований, превращающих все обобщенные координаты в циклические.  [c.372]

Вместо главной функции Гамильтона введем характеристическую функцию Якоби. Характеристическая функция связана с главной функцией некоторым соотношением. Это соотношение совпадает с соотношением между механическим действием согласно Гамильтону и Остроградскому и механическим действием согласно Эйлеру и Лагранжу. Рассмотрим снова функцию  [c.372]

На основании соотношений (Ь) можно полагать, что функция 5 зависит от 7 — ti , начальных координат Угй и начальных скоростей уго. Но, как и при построении главной функции Гамильтона, можно определить начальные обобщенные скорости из соотношений (Н)  [c.373]

Главная функция И7 соответственно соотношению (11.370) выражается равенством  [c.374]

Величины 8Х , соответствующие переходу от координат некоторой точки в многообразии, на которое распространяется интегрирование, к координатам соседней точки, можно назвать вариациями координат. Это определение отличается от введенного нами ранее при изучении вариационных принципов механики. Об этом уже шла речь в 129 при применений метода варьирования, предложенного при изучении главной функции Гамильтона М. В. Остроградским. Еще раз остановимся на этом вопросе.  [c.381]

В осуществлении главной функции насосной станции — подачи воды — наиболее ответственным этапом проектирования является выбор типов и параметров оборудования с учетом его характеристик, взаимосвязей и удобства и безопасности эксплуатации.  [c.201]

Таким образом, сумма 2 приводится к главной функции Н. Если Н не зависит от времени, то, как мы знаем, Н является интегралом..  [c.413]

Необходимо подчеркнуть особые функции НТП в переходный период. Действительно, на предшествующих этапах развития энергетики его главной функцией было повышение эффективности производства, т. е. уменьшение народнохозяйственных затрат на единицу энергии (что отнюдь не всегда означало снижение уровня удельных  [c.74]


Иными словами, главной функцией НТП в переходный период будет не столько удешевление энергии, сколько расширение энергетической базы общества, т. е. предотвращение сдерживания энергетикой темпов развития народного хозяйства. Поскольку же иных путей кардинального решения этой проблемы, по-видимому, не существует, актуальность основных направлений НТП в этот период становится безусловной. К ним относится прежде всего комплекс мероприятий по развитию ядерной энергетики — освоение реакторов на быстрых нейтронах, регенерация ядерного горючего и в последующем создание термоядерной энергетики. Важное направление научно-технического прогресса — демонтаж устаревшего оборудования и создание новых энергосберегающих технологий и оборудования, соответствующих изменившимся условиям развития энергетики.  [c.75]

Из равенств (17) и (18) следует, что главная функция Гамильтона удовлетворяет уравнению Гамильтона — Якоби  [c.158]

Если исходить из найденной главной функции Гамильтона W Kx-х,Г + (у- У )= + (г - z ) ], то уравнения движения получаются по формулам (17), которые  [c.160]

Полученное уравнение носит название уравнения Гамильтона— Якоби. Оно является дифференциальным уравнением в частных производных и определяет зависимость искомой производящей функции от ( 1.....qn, t. Решение уравнения (9.3) обычно обозначают через 5 и называют главной функцией Гамильтона.  [c.302]

Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]

С помощью равенства (9.18) главную функцию Гамильтона можно записать в виде  [c.307]

Мы рассмотрели два метода решения задач механики один с помощью главной функции Гамильтона, другой с помощью характеристической функции Гамильтона. Полученные результаты можно записать теперь в виде следующей сравнительной схемы.  [c.310]

Главная функция Гамильтона и движение фазовой жидкости. Результаты нашего обсуждения, естественно, имеют отношение к задаче интегрирования уравнений динамики. Нам уже известно соотношение между производящей функцией S и функцией Гамильтона Н [см. уравнение  [c.256]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

В распоряжении Гамильтона не было теории канонических преобразований, и он сделал свое открытие, исходя из совершенно иных предпосылок. Главная функция Гамильтона не является абстрактным математическим понятием, которое используется только для получения преобразований специального вида она имеет определенный физический смысл. Для того чтобы пояснить ход рассуждении Гамильтона, начнем с консервативной системы, у которой функция Лагранжа L и функция Гамильтона Н не зависят явно от времени. Именно такие функции встречаются в оптике, и это явилось для Гамильтона исходным пунктом как для оптики, так и для механики. Обобщение на случай неконсервативных систем может быть сделано очень просто задача сводится к случаю консервативных систем путем включения времени t в число механических переменных.  [c.257]


Главная функция Гамильтона, фазовая жидкость 259  [c.259]

Главная функция Гамильтона связана таким образом с двумя уравнениями в частных производных.  [c.260]

При заданной производящей функции уравнения канонического преобразования могут быть получены с помощью дифференцирований и исключений, что дает возможность выразить в явном виде координаты <7/, р,- через qt, pi. Это означает, что мы получаем в явном виде траекторию С-точки, с началом в заданной точке пространства конфигураций. В этом и заключается выдающееся открытие Гамильтона. При заданной главной функции W вся динамическая задача сводится к дифференцированиям и разрешению конечных уравнений.  [c.260]

Главная функция Гамильтона, фазовая жидкость 261 при дополнительном условии  [c.261]

Следовательно, мы построим тем самым главную функцию Гамильтона. Варьируя интеграл действия при произвольных граничных значениях, получаем соотношения  [c.261]

Эта схема интегрирования Г амильтона была упрощена и улучшена Якоби. Главная функция Гамильтона должна удовлетворять сразу двум уравнениям в частных производных. Решение этой задачи практически невозможно без более широкой схемы интегрирования, предложенной Якоби. Производящая функция S зависящего от времени канонического преобразования определяет все движение фазовой жидкости, удовлетворяя лишь одному уравнению в частных производных  [c.262]

Второе дифференциальное уравнение больше не нужно, поскольку точка Qi,. .., Q не должна лежать на обобщенной изоэнергетической поверхности К = 0. Более того, S является функцией только q , q , Qi, Q , t в то время, как главная функция Гамильтона зависит, кроме того, еще и от переменной t.  [c.262]

Улучшение этого сплава в первую очередь достигается добавлением в малых количествах бора и церия (сплавы ХН77ТЮ и ХН77ТЮР, см. также рис. 354), что приводит к очищению границ зерен. Главная функция этих добавок — связать вредные примеси в тугоплавкие соединения.  [c.477]

Исключая при помош,и соотношений (с) из функции X начальные обобиценные скорости, найдем главную функцию Гамильтона-.  [c.369]

Покажем, что интегралы канонической системы дифференциальных уравнений движения можно определить через главную функцию Х. Для этого рассмотрим вариацию функции W, предполагая, что из.иенение этой функции вызвано изменением начальных условий движения. Этот способ варьирования принадлежит М. В. Остроградскому.  [c.369]

Объектом изучения в технической термодинамике весьма часто является какое-либо вещество, выполняющее главную функцию в тепловой машине пар, продукты сгорания топлива, сжатый газ и т. п. Такое вещество также является термодинамической сягстемой и называется рабочим телом машины или термодинамической системы.  [c.15]

Уильям Роуан Гамильтон, видный ирландский математик, в статьях Об общем методе динамики , написанных в 1834—1835 гг., для определения движения вводит новые переменные и новые функции, формулируя общий принцип наименьшего действия. "При этом главная функция, зависящая от начальных и конечных координат и времени, равна сумме живых сил (Г) и сил напряжения (Я). Последние, называемые силовой функцией, для стационарных, то есть не изменяющихся во времени, консервативных систем (механических систем, при движении которых сумма Т- П постоянна), выражают полную энергию системы.  [c.117]

В качестве примера полного интеграла уравнения Гамильтона — Якоби рассмотрим так называемую главную функцию Гамильтона. Для этого вернемся к формуле (7) на стр. 115 и к рис. 33 на стр. 116. Рассмотрим только частный случай, когда ( ) = onst = т. е. примем, что контур Со состоит из начальных состояний системы при t = Кроме того, вместо q, р, будем писать просто t, q , pi, Н. Тогда, если W—действие вдоль прямого пути (т. е. вдоль  [c.157]

Действие W, представленное в виде (1б), т. е. в виде функции от начальных координат, конечных координат и конечного момента времени t, называется главной функцией Гамильтона. Считай, что в равенстве (13) W есть главная функция Гамильтона, мы на оснований этого райёНства получаем  [c.158]

Таким образом, Гамильтон показал, как записываются конечные уравнения движения при помощи полндго интеграла уравнения (19). Однако этот полный интеграл у Гамильтона не был произвольным и в нем произвольными постоянными были начальные значения q] и / . Получался порочный круг для написания конечных уравнений движения (17) нужна главная функция Гамильтона, а для составления этой функции, как выше было показано, нужно знать конечные уравнения движения.  [c.159]

Эти уравнения снова показывают, что два положения движу-щейся фазовой охидкости связаны друг с другом при помош и канонического преобразования. Теперь, однако, можно сказать больше роль W в уравнениях (7.9.10) показывает, что главная функция Гамильтона является производяш,ей функцией того канонического преобразования, которое переводит движущуюся фазовую жидкость из одного состояния в другое, более позднееЧ  [c.259]


Смотреть страницы где упоминается термин Главная функция : [c.649]    [c.64]    [c.167]    [c.159]    [c.159]    [c.304]    [c.311]    [c.257]    [c.258]   
Смотреть главы в:

Аналитическая динамика  -> Главная функция


Динамические системы (1999) -- [ c.29 , c.50 ]



ПОИСК



Возмущающая функция главная часть

Гамильтонова двухточечная характеристическая или главная функция. Уравнение Гамильтона — Якоби

Главная и характеристическая функция для несвободного движения в координатах, связанных условными уравнениями

Главная функция Гамильтона в независимых координатах

Главная функция Гамильтона в независимых координатах. Характеристическая функция

Главная функция Гамильтона и движение фазовой жидкости

Главная функция в координатах, связанных условными уравнениями

Главная функция гамильтонова

Деформации главные 181, — как функции смещений 375, — компоненты 381, 389, — поверхность 389, — преобразования

Дифференциальное уравнение Якоби-Гамильтона для главной функции в частных производных

Построение главной функции Гамильтона при помощи полного интеграла Якоби

Примеры использование главной функции

Примеры непосредственного вычисления главной функции

Производные главной функции

Свойства главной функции

Справка о функциях отдела учебных заведений Первого главного управления при Совете Министров СССР. 26 августа

Удлинение при пределе пропорциональности 186,—полное, выраженное через составляющие перемещения 54 удлинения как функции смещения 375, — главные

Уравнение в частных производных для главной функции

Уравнение дифференциальное частное ЯкобиГамильтона для главной функци

Функции главная часть

Функции главного механика ремонтно-строительной организации

Функция Гамильтона главная

Функция Гамильтона главная диссипативная

Функция Гамильтона главная знакоопределенная

Функция Гамильтона главная знакопеременная

Функция Гамильтона главная знакопостоянная

Функция Гамильтона главная кинематическая

Функция Гамильтона главная обобщенная

Функция Гамильтона главная отрицательная

Функция Гамильтона главная характеристическая

Функция Лагранжа в главных координатах

Функция возмущающая главная

Функция главная (нормальная)

Функция главного символа

Якоби-Гамильтона уравнение для главной функции



© 2025 Mash-xxl.info Реклама на сайте