Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные вариационные принципы механики

В заключение остановимся на классификации вариационных принципов. Обычно различают дифференциальные и интегральные принципы. Дифференциальные принципы отражают свойства механических движений, соответствующие некоторому моменту или весьма малому промежутку времени. Интегральные принципы отражают свойства механических движений, соответствующие конечному интервалу изменения времени. Сначала остановимся на рассмотрении дифференциальных вариационных принципов механики.  [c.184]


В этой главе рассматриваются дифференциальные вариационные принципы механики.  [c.85]

Дифференциальные вариационные принципы механики  [c.102]

Дифференциальные вариационные принципы механики в теории импульсивных движений  [c.435]

Сопоставляя принципы Даламбера — Лагранжа и Гаусса, Ф. Жур-ден 1 в 1908 г. установил, что существует дифференциальный вариационный принцип механики, который занимает промежуточное место между ними и аналитически выражается соотношением  [c.90]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Несмотря на радикальное отличие новых идей от концепций старой физики, основной чертой дифференциальных уравнений волновой механики является их самосопряженность. Это означает, что они получаются из вариационного принципа. Поэтому, несмотря на все различия в интерпретациях, вариационные принципы механики продолжают играть важную роль в описании всех явлений природы.  [c.395]

Вариационные принципы механики представляют собой выраженные языком математики условия, которые отличают истинное (действительное) движение системы от других кинематически возможных, т. е. допускаемых связями, движений. Вариационные принципы делятся на дифференциальные и интегральные. Первые дают критерий истинного движения для данного фиксированного момента времени, а вторые — на конечном интервале времени.  [c.102]

Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]


Вариационные принципы механики, с одной стороны, имеют большое теоретическое значение, поскольку они выявляют энергетическую основу теории и устанавливают связь между различными подходами в описании проблемы теории. С другой стороны, важным является практическое значение принципов, поскольку они позволяют, во-первых, имея общие выражения для функционалов, находить дифференциальные уравнения и естественные граничные условия в любых конкретных случаях, что непосредственно в ряде случаев сделать затруднительно, а во-вторых, находить решения, минуя составление дифференциальных уравнений, при помощи так называемых прямых методов.  [c.457]

Вариационный принцип Гамильтона (общий случай). Общее уравнение динамики Даламбера—Эйлера является вариационным принципом механики, выраженным в дифференциальной форме. Важнейшим интегральным вариационным принципом аналитической механики является принцип Гамильтона, который может быть выведен из общего уравнения динамики. Пусть все связи, наложенные на систему, — идеальные. Уравнение (17) принимает вид  [c.36]

О вариационных принципах. Вариационными принципами классической механики называют общие закономерности механического движения, позволяющие из совокупности кинематически возможных движений механической системы, т. е. движений, допускаемых наложенными на систему связями, выделить действительное движение, которое она будет совершать в заданном силовом поле. При этом дифференциальные вариационные принципы дают критерий истинного движения, отнесенный к некоторому моменту времени (например, принцип возможных перемещений), а интегральные — к конечному интервалу времени (например, принцип Гамильтона—Остроградского).  [c.308]

Традиционный подход в механике газа, жидкости, твердого деформирования тела основывается на понятии сплошной среды [60, 67, 167, 174] и приводит к построению континуальных моделей сред, которые выражаются в терминах интегральных или дифференциальных законов сохранения для основных параметров среды, являющихся функциями непрерывных координат и времени, определенной гладкости и заданными начально-краевыми условиями, с учетом конкретных реологических свойств среды (упругость, вязкость, пластичность и т. д.). Для построения приближенных методов решения эффективны вариационные формулировки моделей [1, 23 33], следующие из общих вариационных принципов механики сплошных сред.  [c.83]

Неголономная механика, представляющая собой существенное обобщение голономной механики, дает возможность расширить и углубить наши представления о механическом движении, обобщить теорию дифференциальных уравнений движения, вариационные принципы механики, теорию колебаний и устойчивости, теорию трения, теорию удара, разрешить множество новых механических задач естествознания и техники.  [c.86]

Аналитические методы, предложенные Лагранжем, обладают весьма большой общностью и математической строгостью их дальнейшее развитие привело к установлению ряда дифференциальных и вариационных принципов механики, из которых основные теоремы механики Ньютона получаются при частных предположениях.  [c.67]

Следуя традиционному изложению, принятому в механике систем с конечным числом степеней свободы, рассмотрим сначала дифференциальный вариационный принцип, которым является принцип Гаусса, или принцип наименьшего принуждения, а затем наиболее известный интегральный принцип — принцип Га-,, Мильтона — Остроградского. После этого рассмотрим некоторые следствия, вытекающие из этих принципов.  [c.64]

Вариационные принципы классической механики можно связать с вопросами, которые на первый взгляд могут показаться далекими от них. Например, имеется тесная связь принципа Гамильтона с общей теорией дифференциальных уравнений второго порядка в частных производных. Некоторые из таких вопросов мы рассмотрим в следующих главах, однако среди них есть немало таких, которые рассматривать в нашей книге нецелесообразно. К их  [c.261]


Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

Эйлерова производная этого выражения приводит прямо к релятивистскому импульсу G в форме (2.19), а, следовательно, также и к закону зависимости массы электрона от его скорости. Вообще говоря, нахождение функции Лагранжа L, приводящей через посредство вариационного принципа к заданным дифференциальным законам, является (в особенности вне пределов механики) трудной задачей, для решения которой не существует общих правил. Для указанного выше случая движения электрона в магнитном поле эта задача была весьма простым способом разрешена Лармором и Шварцшильдом. В этом случае разложение L на кинетическую и потенциальную части по схеме L = Т — V, вообще говоря, уже невозможно.  [c.277]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Прицип Даламбера — Лагранжа, рассмотренный в 46, принадлежит к дифференциальным вариационным принципам механики. Возможные перемещения бг точек материальной системы следует рассматривать в случае нестационарных связей  [c.184]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Важнейшим и наиболее общим дифференциальным вариационным принципом классической механики является принцип возможных перемещений, изложенный в XVII и XVIII главах этого курса.  [c.390]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]


Наконец, румынские ученые Манжерон и Делеану в конце 50-х годов установили наиболее общий дифференциальный вариационный принцип аналитической механики, согласно которому общее уравнение динамики принимает вид  [c.11]

В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]

Как известно, многие законы механики, в частности механики солошиой среды, наряду с описанием их дифференциальными уравнениями сводятся к утверждению, что некоторый функционал в расомат-риваемом процессе должен достигать экстремума. В такой формулировке эти законы называются вариационными принципами механики. Задачи, в которых требуется исследовать фуик-цяонал на экстремум, называются вариационными задачами.  [c.95]

При решении дифференциальных уравнений с обыкновенн частными производными важно понимать, в каких функционал пространствах следует рассматривать их решения и доказывать ремы об их существовании. Ответ на этот вопрос связан с вар ной формулировкой соответствующей задачи, на основе которой ределяются обобщенные решения. Этот подход во многом сов с вариационными принципами механики и, в частности, с вар онньш принципом Гамильтона-Остроградского. Понимание этих стоятельств важно для построения вычислительных алгоритмов, 01 ки их сходимости и исследования устойчивости движений.  [c.276]

Вариациопные принципы и основанные на них вариационные методы играют важную роль в механике деформируемого твердого тела как в части получения дифференциальных уравнений задач, так и в части построения приближенных решений. К методам получения прнближеш1ых решений относятся методы Ритца — Тимошенко, Канторовича — Крылова, Бубнова — Галеркина и др. В основе всех этих методов лежат излагаемые ниже вариационные принципы в той или иной их комбинации. Хотя получение приближенных решений на основе этих методов при наличии мощных ЭВМ постепенно отходят на второй план, они все еще находят применение. В процессе применения ЭВМ на подготовительном этапе есть необходимость задачу интегрирования систем дифференциальных уравнений свести к задаче решения систем алгебраических уравнений. В этой части вариационные методы завоевывают все более и  [c.186]

В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Дифференциальные уравнения движения выражают некоторую зависимость, связывающую между собоИ момент времени t, положение системы, скорости. и ускорения ее точек в этот момент. Если эта зависимость выполняется в каждой точке некоторого пути, то этот путь является прямым. Вариационный же принцип характеризует весь прямой путь в целом. Он формулирует экстремальное (стационарное) свойство некоторого функционала, выделяющее прямой путь среди других кинематически возможных путей. Вариационные принципы имеют более обозримую и компактную форму и часто используются в качестве фундамента для новых (неклассических) областей механики.  [c.107]

Однако более фундаментальным, чем все эти особенности, является наличие в аналитической механике объединяющего принципа, который является кульминационным пунктом аналитического подхода. Движение достаточно сложной механической системы описывается больщим числом — иногда даже бесконечным числом — отдельных дифференциальных уравнений. Вариационные принципы аналитической механики образуют единую основу, из которой следуют все эти уравнения. За всеми этими уравнениями скрывается общий принцип, заключающий в себе смысл всей этой совокупности уравнений. Вводится одна фундаментальная величина действие принцип, согласно которому эта величина должна иметь стационарное значение, приводит к полной системе дифференциальных уравнений. Более того, установление этого принципа не связано с какой-либо специальной системой координат. Поэтому и аналитические уравнения движения также инвариантны относительно любых преобразований координат.  [c.27]


Смотреть страницы где упоминается термин Дифференциальные вариационные принципы механики : [c.467]    [c.85]    [c.925]    [c.22]    [c.45]    [c.327]   
Смотреть главы в:

Теоретическая механика  -> Дифференциальные вариационные принципы механики



ПОИСК



59 Вариационные принципы механик

Вариационное дифференциальное

Вариационные принципы механики

Дифференциальные вариационные принципы механики Принцип Даламбера-Лагранжа

Дифференциальные вариационные принципы механики в теории импульсивных движений

Дифференциальные принципы механики

Принцип вариационный

Принципы вариационные дифференциальные

Принципы дифференциальные

Принципы механики

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте