Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компоненты деформаций 25, 26, 37 Упругое изотропное тело

В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]


Известно, что ограничения, накладываемые результатами простейших экспериментов (связь между напряжениями и деформациями при растяжении-сжатии, чистом сдвиге и т.п.), не определяют полностью функцию Ф, поэтому, вообще говоря, можно построить сколько угодно зависимостей между компонентами напряжений и деформаций для упругого изотропного тела, приводящих при одноосном растяжении-сжатии к линейному закону Гука [3, 4].  [c.112]

Чтобы выразить через перемещение и, надо обратиться к соотношениям упругости (2.3) между компонентами напряжения и деформации в изотропном теле. При выбранных направлениях осей перемещение V в направлении у и —напряжение, перпендикулярное пластинке, равны нулю, так что из первого и третьего уравнений (2.3)  [c.79]

Метод определения напряжения в пластинках ). Мы переходим к рассмотрению некоторых частных решений уравнений равновесия упругого изотропного тела, на которое действуют только поверхностные силы эти решения можно будет применить к исследованию вопроса о деформации пластинок под действием заданных сил. Л 1ы получим эти решения, рассматривая первую, данную в 92 систему уравнений, которые служат для определения компонентов напряжения. В этом параграфе было показано, что кроме уравнений  [c.485]

В заключение следует указать, что поскольку для следующих закону Гука анизотропных тел самого произвольного типа удельная энергия деформации является однородной квадратичной формой от компонентов деформации, для них остается справедливым ряд положений, доказанных ранее для линейно упругих изотропных тел. В частности, остается справедливой формула (12.6) и вытекающая из нее теорема Клапейрона (13.4), а также обобщение этой теоремы (13.3). Остается справедливой и теорема взаимности работ (что было показано в 15) и сохраняются в силе рассуждения при доказательстве теоремы единственности. Рассмотрение задач теории упругости анизотропных тел (в классической постановке) производится аналогично случаю изотропных тел, только при выражении напряжений через деформации приходится пользоваться не формулами (6.2) или (6.6), а более сложными линейными зависимостями (19.2), причем в последних (оставаясь в рамках допущений классической теории упругости) надо положить В дальнейшем заниматься  [c.227]

Из курса сопротивления материалов известно, что в пределах упругости зависимости компонентов деформации от компонентов напряжения для изотропного тела имеют вид  [c.37]


Деформируемое тело, полностью восстанавливающее свои размеры и форму после снятия нагрузки, называется упругим. Для изотропного однородного упругого тела при малых деформациях и напряжениях, не превышающих некоторых определенных значений, принимаем линейные зависимости между компонентами деформации и компонентами напряжения. Эти линейные зависимости выражают собой закон Гука  [c.180]

Поскольку упругий потенциал W (8 ) является инвариантом и для линейно-упругого тела представляет собой функцию второго порядка компонент тензора деформации, то в случае однородного изотропного тела эту функцию можно образовать из линейного и квадратичного инвариантов тензора деформации  [c.60]

В этой главе рассматриваются задачи линейной теории упругости, выводы которой справедливы для тела однородного и изотропного, у которого между компонентами деформации и компонентами напряжений существует наиболее простая линейная связь (обобщенный закон Гука), а самые деформации предполагаются малыми, т. е. такими, когда компоненты деформации (относительные удлинения, относительные сдвиги) пренебрежимо малы по сравнению с единицей.  [c.50]

Теперь обсудим решение краевой задачи теории упругости неоднородных тел, которое приводит к определению эффективных модулей материала. Рассматриваемое тело представляет собой прямоугольную призму (см. рис. , а). Основные уравнения для компонент тензоров напряжений и деформаций — это уравнения (1), в которых коэффициенты жесткости удовлетворяют условиям (2), а также обычные уравнения равновесия в напряжениях и уравнения совместности деформаций теории упругости однородных изотропных тел. Последние соотношения здесь не приводятся, поскольку их можно найти в любом курсе теории упругости. Достаточно указать, что переменные поля (напряжений), имеющие вид  [c.42]

Основной зависимостью классической теории упругости является обобщенный закон Гука, гласящий, что для изотропного тела компоненты тензора деформаций пропорциональны компонентам тензора напряжений. Так, для направления л справедливы равенства (при условии, что направления х я у перпендикулярны)  [c.10]

Упругое тело называют анизотропным, когда его упругие свойства различны в различных направлениях. Поведение под нагрузкой такого тела даже при линейной зависимости деформаций от напряжений принципиально усложняется по сравнению с описанием поведения изотропного тела. Как показали опыты с анизотропными телами, любая из компонент тензора напряжения может привести к возникновению всех компонент тензора деформаций. Например, если брус прямоугольного поперечного сечения, изготовленный из анизотропного материала, равномерно растягивать вдоль оси, то в общем случае анизотропии такой брус кроме удлинений вдоль оси и изменений размеров поперечного сечения (различных в каждом направлении) будет претерпевать и деформации сдвига во всех трех плоскостях, приводящие к изменению первоначально прямых углов между его гранями.  [c.8]

Связь между напряжениями и деформациями. Для изотропного упругого тела при малых деформациях обобщенный закон Гука устанавливает линейные соотношения между компонентами деформации и компонентами напряжений  [c.38]

Деформированное состояние тела является неравномерным и меняется от точки к точке. Оно полностью определяется шестью компонентами деформаций тремя относительными линейными деформациями е ., е е. и тремя угловыми деформациями 7 . , Y ,,. Для изотропных материалов при малых деформациях в упругой стадии связь между деформациями и напряжениями устанавливается обобщенным законом Гука  [c.405]


Однородное изотропное нелинейно-упругое тело имеет одинаковые во всех направлениях упругие свойства. Следовательно, выражение удельной потенциальной энергии через компоненты деформаций г ,  [c.21]

Оно, как это будет показано дальше в главе 8, в действительности справедливо для всякого изотропного идеально упругого твердого тела. Отсюда следует, что в любых материалах подобного типа возникновение неодинаковых по величине нормальных компонент напряжения обусловлено эффектом конечной деформации . Если деформация s мала, то разность рц — рзг будет невелика по сравнению со сдвиговым напряжением.  [c.110]

В главе 8 было показано, что соотношения напряжение — деформация для изотропного абсолютно упругого твердого тела приводятся к виду (8.26) в компонентах телесных полей в случае деформации малой в том смысле, что телесные компоненты деформации (8.22) бесконечно малы. Выведем соответствующие уравнения для компонент пространственных полей. Воспользуемся градиентами вектора смещений и определяемыми уравнением  [c.420]

В предыдущих параграфах мы пользовались сингулярным решением для изотропного упругого тела, хотя в большинстве практических случаев рассматриваемые материалы обладают сильно анизотропными упругими свойствами (например, слоистые и армированные материалы, а также большинство материалов естественного происхождения). Возрастание анизотропии сказывается на уменьшении симметрии в упругих свойствах и увеличении числа упругих постоянных, связывающих напряжения и деформации в точке такого тела. В теории упругости анизотропной среды показано, что произвольный анизотропный материал, не обладающий плоскостями симметрии упругих свойств, можно охарактеризовать 21 независимой упругой постоянной [19,20]. Использованную в этом случае форму закона Гука лучше всего продемонстрировать, записав шесть независимых компонент деформаций и напряжений для трехмерного случая в виде векторов j и е и заметив, что наибо-лее общее линейное соотношение между ними представляется в виде матрицы упругих податливостей [С] размером 6x6, откуда  [c.125]

Классическая теория упругости основана на обобщении закона Гука, который вначале был сформулирован для пружины или пружинящего тела . Так называемый обобщенный закон Гука устанавливает, что в каждой точке линейно-упругого трехмерного тела шесть компонент тензора напряжений = ji линейно связаны с шестью компонентами тензора деформаций = e . Постоянные, связывающие компоненты напряжений и деформаций, характеризуют упругие свойства тела. Пока предположим, что эти свойства не зависят как от положения, так и от ориентации, т. е. будем считать, что тело однородно и изотропно. Некоторые аспекты линейной теории упругости для однородных анизотропных тел будут рассмотрены в дальнейшем.  [c.23]

Видное место в истории механики сплошной среды занимает Дж. Г. Стокс, давший в 1845 г. вывод уравнений теории упругости, опирающийся на строго континуальный подход (Эйлера — Коши) и естественную гипотезу о линейной зависимости компонент напряжения от компонент деформации. В результате для изотропного тела он получил две упругие постоянные и привел ряд веских соображений в пользу того, что они не могут быть сведены к од-  [c.52]

Рассмотрим деформирование изотропного упругого тела. Предположим, что при перемене знака напряжений на обратный компоненты деформации также меняют лишь знак, другими словами, при растяжении и сжатии тело ведет себя совершенно аналогичным образом. Целесообразно выделить класс подобных тел среди всей совокупности изотропных тел и назвать их нормально изотропными.  [c.106]

Приведенные в первой главе формулы и уравнения справедливы для любой сплошной среды, независимо от того, является она упругой, пластической или находится в любом другом физическом состоянии. Для различных физических состояний сплошной среды физические уравнения различны. Рассмотрим среды или тела, для которых зависимости между деформациями и напряжениями носят линейный характер, т. е. подчиняются обобщенному закону Гука. По упругим свойствам тела разделяются, с одной стороны, на однородные и неоднородные, а с другой — на изотропные и анизотропные. Тела, в которых упругие свойства во всех точках одинаковы, называются однородными, а тела с различными упругими свойствами в различных точках тела — неоднородными. Неоднородность непрерывная, когда упругие свойства тела от точки к точке изменяются непрерывно, и дискретная, когда упругие свойства тела от точки к точке испытывают разрывы или скачки. Тела, упругие свойства которых во всех направлениях, проведенных через данную точку, одинаковы, называют изотропными, а тела, упругие свойства которых во всех направлениях, проведенных через данную точку, различны,— анизотропными. В зависимости от структуры тело может быть изотропным или анизотропным и одновременно однородным или неоднородным [91]. В случае однородного упругого тела, обладающего анизотропией общего вида, зависимость между компонентами тензора напряжений и тензора деформаций в точке линейная  [c.68]

Другая схема расчета — метод дополнительных деформаций — использует в качестве исходной модели изотропное упругое тело с постоянными коэффициентами упругости. Здесь приращения компонентов деформации представляют в виде суммы приращений упругих деформаций и дополнительных слагаемых — пластических составляющих. Последние вычисляют последовательными приближениями (см. работу [3]).  [c.104]


До настоящего момента мы рассматривали изотропное тело, однако обычно приходится иметь дело с анизотропными телами. В этом случае деформация и механическое напряжение становятся тензорами, имеющими соответственно по шесть компонент. Упругих постоянных становится 36.  [c.250]

Упругая симметрия. В изотропном упругом теле все лучи, исходящие из одной точки, эквивалентны. В анизотропном теле, обладающем какого-либо рода симметрией, всегда можно найти некоторое число эквивалент-ных направлений эти лучи образуют симметричную фигуру, которая допускает все совмещающие операции некоторой группы. Этой группе операций соответствует группа ортогональных линейных подстановок упругий потенциал инвариантен по отношению ко всем подстановкам этой группы. В результате каждой такой подстановки компоненты деформации, отнесенные к новым осям координат, будут линейными функциями компонентов деформации, отнесенных к старым осям. Полезно будет определить те соотношения между упругими постоянными, которые должны удовлетворяться для того, чтобы упругий потенциал не изменялся при преобразованиях компонентов деформации, которые соответствуют этим подстановкам.  [c.162]

Устанавливается связь между компонентами напряжения и производными от удельной энергии деформации по компонентам деформации. Отсюда выводятся, в наиболее общем виде, соотношения между напряжениями и деформациями в изотропных упругих телах.  [c.106]

Изотропные упругие тела вполне симметричны по своим механическим свойствам. Последнее вытекает из того, что для этих тел удельная энергия Ф не изменяется при повороте главных осей, если при этом значения главных компонентов деформации остаются без изменения. Значения главных напряжений в любой точке изотропного упругого тела полностью определяются значениями главных  [c.149]

Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

Осветим бегло содержание книги Нейманна. В первых пяти главах он выводит основные уравнения теории упругости изотропного тела, вводя понятие компонент напряжения и деформации и устанавливая соотношения между ними через две упругие постоянные. Его обозначения для компонент напряжения были впоследствии приняты многими авторами в частности, их принял Ляв (А. Е. Н. Love). В следующих трех главах дается вывод основных уравнений с помощью гипотезы о молекулярном строении твердых тел. Излагаются работы Навье и Пуассона. Выводятся уравнения для неравномерного распределения температуры, исследуется теорема об единственности решений уравнений упругости. Следующая часть книги посвящена приложениям основных уравнений к частным задачам. Глава, в которой описывается  [c.303]

Обозначим диаметр зерна поликристалла через В. При отсутствии текстуры всевозможные ориентировки зерен равновероятны, и объем V, линейные размеры которого намного больше О, будет практически изотропен. Если размеры макрообъема V малы по сравнению с размерами всего поликристаллического тела (т. е. V достаточно мал), то его можно рассматривать как физическую точку и, выбирая некоторую фиксированную, так называемую лабораторную систему координат ег(1 = 1, 2, 3), определить значения компонент тензоров макронапряжений а°. и макродеформаций е° в этой точке. Когда на поверхности поли-кристаллического тела заданы силы или перемещения, значения о°. и 6,°. определяют, решая соответствующую задачу теории упругости изотропного тела. Вследствие случайности ориентировок зерен, неоднородности их формы и разориентировки по границам значения компонент тензоров напряжений и деформаций ец для фиксированного зерна (микронапряжения и микродеформации) будут случайными величинами. При этом в лабораторной системе координат  [c.387]

Формулы (1) и дают искомую зависимость между компонентами напряжения и деформации в изотропном теле. Величины Я, [а представляют собой постоянные, характеризуюш ие упругие свойства данного тела ). Обозначения эти были введены Ламе (G. Lame, 1795—1870) поэтому Я и [X называются постоянными Ламе. Для каждого данного материала они должны быть определены экспериментально ).  [c.64]

Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]

КинемаФическая теорема—см. Теорема кинематическая Кольцо тонкостенное в условиях установившейся ползучести — Момент сопротивления изгибу 310 — Момент соиротивлёння кручению 315 Компоненты деформаций 25, 26, 37 — Упругое изотропное тело 37  [c.389]

Упругость твердого тела. Согласно закону Гука между напряжениями и деформациями существует пропорциональная зависимость. Для изотропного тела связь между компонентами тензоров Tjjj и дается шестью уравнениями. При этом вводят две упругие постоянные модуль нормальной упругости Е (при осевом растяжении-сжатии) и модуль сдвига G. Вместо модулей Е и G вводят другую пару констант, например постоянные Ламе Л и р,, модуль объемного сжатия К и коэффициент Пуассона v.  [c.5]


ПЛАСТИЧНОСТИ УСЛОВИЕ (текучести условие) — соотношение матем. пластичности теории, определяющее границу, отделяющую область пластического (точнее, уцругопластического) состояния материала от области его упругого состояния. При выполнении П. у. в материале начинают возникать остаточные деформации. П. у. записывается в виде f(Oij) = О, где — компоненты тензора напряжений. Для изотропного тела П. у.— ф-ция инвариантов тензора напряжений.  [c.630]

Изотропные нелинейно-упругие тела описываются различными соотношениями. Большую группу материалов составляют гипе-рупругае изотропные среды. Для них функция энергии деформации представляется обычно как зависимость от инвариантов деформаций. Для плоской задачи инварианты можно выразить через компоненты деформаций следующим о азом  [c.183]

Здесь т — масса материала в объеме о, а п и /з даются формулами (1.22) и (8.2). Таким образом, компоненты напряжения в изотропном абсолютно упругом твердом теле определяются уравнением (8.1), где коэффициенты А, В, С — функции инвариантов деформаций /ь /2, /з, температуры и плотности mjva в ненапряжен-ногл состоянии ta.  [c.209]

Использование всех формулировок для упругих материалов эквивалентно в случае малых деформаций (но, возможно, больших перемещений и поворотов). Эти формулировки должны приводить к приблизительно одинаковым результатам при решении задач (см. 2.1.3). Отметим, что определяющие соотношения закона Гука для линейного упругого изотропного материала можно использовать только для малых деформаций тела. Только при таком ограничении закон Гука описывает поведение реальных материалов. Если формально использовать модель линейного изотропного упругого материала при больших деформациях тела, то TL- и UL-формулировки описывают поведение разных материалов. В [49] на примере решения задачи по растяжению куба отмечается большое расхождение значений компонент тензора напря-  [c.198]

В своей книге по теории упругости Ламе сообщает о другом вкладе своего бывшего коллеги в эту науку, который он именует теоремой Клапейрона. Согласно этой теореме сумма произведений приложенных к телу внешних сил на компоненты смещений по направлениям этих сил в точках их приложения равна удвоенному значению соответствующей энергии деформации тела. По-впдимому, эта теорема была сформулирована Клапейроном за много времени до выхода в свет книги Ламе, и ею, вероятно, отмечается первый случай вывода общего выражения для энергии деформации изотропного тела. В 1858 г. Клапейрон был избран в члены Dpaнцyз кoй Академии наук. Он продолжал свою работу в Академии и в Школе мостов и дорог до своей смерти в 1864 г.  [c.145]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Линза представляет собой сплошное тело. При наложении температурного поля оправа не позволяет линзе свободно изменять свои размеры, что приводит к возникновению в них напряженно-д )ормированного состояния. При этом вся система будет находиться в равновесии. После изменения на некоторую величину температура считается постоянной. Для сплошных тел, находящихся в равновесии, в теории упругости формулируются два принципа — начало возможных перемещений и начало возможных изменений напряженного состояния, которые устанавливают связь между компонентами напряжений и производными от удельной энергии деформации по компонентам деформаций. Это позволяет вывести в общем виде соотношения между напряжениями и деформациями в изотропных упругих телах [26 28 33 34]. Если решение задачи основывается на принципе возможных перемещений (основная задача, или принцип Лагранжа), то в результате получаются перемещения для любой точки тела, для которого производится решение. Принципиально решения на основе обоих принципов равнозначны, оба решения базируются на приращении работы деформации, однако оптиков в большей степени интересует не само напряженное состояние, а то искажение формы детали, которое оно вызывает. Поэтому для расчета перемещений любых точек  [c.157]

Первый мемуар Пуассона зб) по рассматриваемому вопросу был прочитан Парижской академии в апреле 1828 г. Этот мемуар интересен заключающимися в нем многочисленными приложениями общей теории к частным задачам. При рассмотрении вопроса об общих уравнениях Пуассон так же, как и Коши, начинает с вывода уравнений равновесия, выраженных в компонентах напряжения, и вычисляет усилие на какой-либо площадке, происходящее от интрамолекулярных сил. Формулу, выражающие напряжения через деформации, содержат суммы, которые берутся по всем молекулам , находящимся в области действия данной молекулы . Пуассон не находит возможным заменить все суммы интегралами и считает, что это может быть сделано лишь при суммировании по телесному углу вокруг данной молекулы , ро не при суммировании по величине,, расстояния, отсчитываемого от нее. Уравнения равновесия и движения, изотропного упругого твердого тела, которые получаются таким образом, не отличаются от уравнений Навье. Принцип, по которому суммирования могут быть заменены интегрированием, разъяснен Коши зз) следующим образом для, объема, содержащего очень много молекул и имеющего малые размеры по сравнению с радиусом той сферы, в которой проявляется заметное молекулярное действие, число молекул можно считать пропорциональным объему если теперь мы оставим в стороне молёкулы находящиеся в непосредственной близости к рассматриваемой молекуле, то действие всех молекул, заключенных в одном из малых объемов, о которых была речь, эквивалентно силе, ухиния действия которой проходит через центр тжкести объема, а величина пропорциональна этому объему и некоторой функции от расстояния между центром тяжести объема и данной рассматриваемой молекулой. Действие более удаленных молекул именуется регулярным , а действие более близких— нерегулярным . Пуассон считал, что нерегулярным действием более  [c.23]

При универсальной деформации тензор В должен удовлетворять этому уравнению тождественно относительно функций Зг-Если мы выполним дифференцирование и положим коэффициенты при Эо, гЭо. 5ц2о, 5iii3-i равными нулю, то мы получим 12 условий, которым должны удовлетворять 6 компонент тензора В. Кроме того, этот тензор должен быть положительно определенным и должен определяться, по полю деформаций согласно формуле B==FF , гдеР = УХ . В результате получается еще больше условии. Эриксен доказал ), что В = = onst представляет собой единственный тензор, удовлетворяющий всем этим условиям единственно возможными универсальными статическими деформациями однородного изотропного упругого тела являются однородные деформации.  [c.283]


Смотреть страницы где упоминается термин Компоненты деформаций 25, 26, 37 Упругое изотропное тело : [c.105]    [c.100]    [c.52]    [c.21]    [c.139]    [c.74]    [c.22]    [c.112]   
Прикладная теория пластичности и ползучести (1975) -- [ c.37 ]



ПОИСК



Деформации изотропных тел

Деформации компоненты

Деформация упругая

Изотропность

Компонент деформации

Тела упругие — Деформации —

Тело изотропное,

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте