Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация универсальная

Для простейших деформаций универсальны такие гипотезы (схема 13)  [c.9]

С помощью шарнира динамометр соединяется с тягой верхнего захвата. Электрический сигнал, пропорциональный нагрузке, поступает в один из вторичных регистрирующих приборов типа ЭПП. Один прибор записывает результаты в координатах нагрузка—деформация (универсальные испытания с постоянной скоростью деформирования), второй — в координатах нагрузка—  [c.97]


Рис. 65. Деформация универсально-сборных приспособлений Рис. 65. Деформация универсально-сборных приспособлений
Для упрочняющихся материалов зависимость t=0(s) считается универсальной при активных деформациях.  [c.266]

Поэтому важным является определение фрактальной размерности структуры не только исходной, но и динамической. Степень разрыхления структуры непосредственно контролируется пластическими свойствами материала, а следовательно, фрактальная размерность пластически деформированных объемов должна зависеть от степени деформации. Однако, такую связь легче всего установить в критических точках (точки бифуркаций), обладающих свойствами универсальности.  [c.100]

Предельная плотность энергии деформации как универсальный критерий локального и глобального разрушении  [c.271]

УНИВЕРСАЛЬНЫЕ УРАВНЕНИЯ ДЛЯ ПЕРЕМЕЩЕНИЙ ПРИ РАЗЛИЧНЫХ ДЕФОРМАЦИЯХ.  [c.16]

Можно назвать, по крайней мере, три возможных способа сохранения текстуры деформации первые два из них, видимо, имеют универсальное значение, третий может быть использован лишь в частных случаях.  [c.408]

В определении количественной меры пластичности стремились к поиску универсальной характеристики, не зависящей от напряженно-деформированного состояния. Например, за меру пластичности принимали усредненную деформацию, полученную в результате испытаний на растяжение и сжатие. Для каждого вида механического испытания характерна своя определенная схема напряженного состояния, поэтому предел пластичности будет различным для разных видов испытаний.  [c.488]

При определении перемещений узлов ферм и зависимостей между абсолютными удлинениями стержней во всех задачах этой главы будем пользоваться геометрическим методом. Этот метод не обладает универсальностью и им удобно пользоваться только в тех системах, в которых количество стержней невелико, и особенно удобно, если система симметрична. Однако он хорош тем, что дает наглядное представление о картине деформации системы и поэтому всегда используется в начальной стадии обучения. Напомним, что основным положением этого метода при определении положений узлов фермы после деформации является замена дуг на фермах большой жесткости перпендикулярами к первоначальным положениям стержней, считая, что точки С и С" на рис. 11.22, а совпадают. На данном рис. это не очевидно, так как абсолютные удлинения стержней / и 2 изображены для возможности геометрического построения в сильно увеличенном масштабе по сравнению с масштабом системы. Если бы масштабы абсолютных удлинений были одинаковы с масштабом системы, то эти точки практически совпадали бы.  [c.59]


Для удержания тяжелых деталей в роботах этого типа применяются схваты с двумя поступательными кинематическими парами (рис. 7.1, б), что позволяет обеспечить значительные усилия зажима при малом ходе, а также более высокую жесткость схвата. Для переноса труб используют специализированные схваты с пневмоприводом (рис. 7.1, в). С целью устранения деформаций и перегрузок звеньев робота и захватываемых предметов применяют самоустанавливающиеся схваты. Самоустановка достигается плавающими губками, обладающими двумя свободами движения относительно корпуса схвата, как это сделано в отечественном универсальном манипуляторе УМ-1. Для лучшей приспособляемости губок схвата к форме детали широко применяют резиновые или подпружиненные элементы, что необходимо при захвате хрупких деталей. Часто для захвата хрупких деталей применяют надувные элементы в виде резиновых подушечек или пальцев. Схваты с пневматическим приводом отличаются широким распространением, так как обеспечивают простоту, надежность и удобство эксплуатации. Гидропривод применяется преимущественно в промышленных роботах большой грузоподъемности. Электрический привод захватных устройств находит достаточно широкое применение.  [c.122]

Наиболее универсальными свойствами являются механические. Это объясняется тем, что большинство изготовляемых изделий во время эксплуатации подвергается действию нагрузок, порождающих воздействующие на материал силы, которые могут создавать в материале растягивающие, сжимающие или касательные (сдвиговые) напряжения и соответствующие им деформации.  [c.15]

Механизм деформации и разрушения разных конструкционных материалов различен. В настоящее время появилось много новых материалов, в том числе синтетических. Некоторые из них имеют ярко выраженную анизотропию. Таковы, например, армированные и волокнистые материалы. Но даже многие из тех материалов, которые в больших объемах кажутся вполне однородными (как, например, сталь и чугун), имеют поликристаллическую структуру и, следовательно, в микрообъемах тоже анизотропны. Поэтому до настоящего момента не удалось построить универсальную математическую модель, удовлетворительно описывающую процесс деформации и разрушения любого материала. Существует несколько таких моделей, каждая из которых строится на основе своей особой гипотезы разрушения и находится в согласии с экспериментальными результатами только для определенной группы материалов. Мы не сможем рассмотреть здесь все эти модели и ограничимся только несколькими, простейшими, но обеспечивающими приемлемую точность расчетов.  [c.158]

Универсальность рассматриваемой машины типа УМЭ-ЮТ ) состоит не только в том, что на ней можно производить испытания металлических и пластмассовых образцов на растяжение, на сжатие или на изгиб при статическом приложении нагрузки, но главным образом в том, что она позволяет осуществлять циклическое нагружение с любым коэффициентом асимметрии цикла при заданных деформациях или нагрузках в пределах ее грузоподъемности от +10 до —10 Т. Наибольшая частота циклической нагрузки машины составляет 10 циклов в минуту. К тому же все эти нагрузки можно задавать как в условиях обычной температуры, так и в условиях повышения температуры образца до 1200 °С. Наконец, машина имеет электронные силоизмеритель и диаграммный аппарат, позволяющий записывать в большом масштабе кривую зависимости усилия от деформации образца.  [c.255]

В работе [251 предложен более универсальный метод расчета, не связанный с предположением о том, что в каждом зерне действует одна и та же фиксированная группа систем скольжения, которая обеспечивает наименьшую сумму сдвигов. К тому же этот метод не требует допущения об однородной деформации. Тем не менее для случая испытаний на растяжение поликристалла с ГЦК-решеткой значение фактора ориентировки оказалось равным т = 3,1, т. е. данные работы  [c.15]

Вместе с тем, для удобства анализа закономерностей роста трешин суммирование затрат энергии рассматривают применительно к наиболее простой ситуации — одноосное нагружение путем растяжения или изгиба до достижения предельного состояния. Оно соответствует переходу от устойчивого (без нарушения целостности) состояния металла, воплощенного в форме образца или элемента конструкции, к неустойчивому, а следовательно, неуправляемому процессу быстрого (мгновенного) развития разрушения. Использование простейшей ситуации в анализе поведения металла позволяет использовать механические (напряжение, деформация) и геометрические характеристики (длина трещины, ширина и толщина образца, элемента конструкции) для установления однозначной связи между затратами энергии и используемыми комбинациями вышеуказанных характеристик. Выполняемый анализ должен служить цели определения затрат энергии на процесс распространения трещин на основе именно механических характеристик в наиболее широком диапазоне их изменения с тем, чтобы затем использовать энергетические (универсальные) характеристики в описании более сложного, предполагаемого эксплуатационного разрушения элемента конструкции.  [c.78]


Для разделения (селекция) уровня сигналов АЭ от разных процессов (источников) пластической деформации была использована универсальная постоянная разрушения материалов, предложенная В. С. Ивановой  [c.171]

Универсальная машина для испытания на усталость при различных видах напряженного состояния — изгибе, кручении, растяжении и сжатии, а также сложно-напряженном состоянии при совместном действии изгиба и кручения содержит два направленных вибратора, угол между которыми можно изменять от О до 90°. Разработана машина, позволяющая проводить испытания образцов или тонкостенных элементов конструкций при программном нагружении в условиях чередования статической ползучести и циклического нагружения [76]. Для исследования влияния переменных циклических напряжений на процесс ползучести разработано устройство [120], позволяющее регистрировать деформацию ползучести в указанном режиме нагружения. Установка позволяет проводить испытания плоских образцов на усталость при знакопеременном изгибе и кручении.  [c.176]

Основное преимущество другого подхода — оценки податливости— заключается в его универсальности в этом случае не требуется знать величину а и, значит, можно использовать образцы более сложной конфигурации. Было показано [8], что изменение энергии деформации при продвижении трещины на единицу длины можно выразить как  [c.270]

Ф Примеры универсальных программных комплексов. 1. Программный комплекс Прочность-75 разработан в проблемной лаборатории тонкостенных пространственных конструкций Киевского инженерно-строительного института и ориентирован на ЭВМ БЭСМ-6. Наличие монитора и языкового процессора позволяет с полным основанием отнести Прочность-75 к программным системам. Система предназначена для исследования напряженного состояния и собственных колебаний элементов несущих конструкций. Входной информацией системы являются сведения о топологии, геометрии и физической структуре исследуемого объекта. На выходе пользователь может получить картину распределения сил и деформаций во времени. Система Прочность-75 разделена на отдельные подсистемы, предназначенные для анализа объектов определенной размерности.  [c.56]

В связи с разнообразием решаемых задач и условий измерений существует большое число типов тензометров, различных по своим характеристикам и назначению. Наиболее универсальным тензометром, обеспечивающим проведение тензометрии в различных условиях, является электрический тензометр с тензорезисторами, с автоматизацией измерений и обработкой данных измерений на ЭВМ. Эта система наилучшим образом обеспечивает при дистанционности и многото-чечности измерений выполнение натурной тензометрии конструкций аппаратов, работающих при переменных реж имах в сложных температурных условиях. Этот метод может быть применен для определения полей деформаций и напряжений при натурной тензометрии, оценке прочности и оптимизации конструкций аппаратов.  [c.340]

Прежде всего следует акцентировать внимание на том, что С.Н. Журков был одним из первых, кто обнаружил универсальность временной зависимости прочности, введя в рассмотрение процесса разрушения фактор времени. Эта идея поколебала установившуюся точку зрения на разрушение как мгновенного акта. Концепция .IL Журкова связана с утвсрждишем, что разрушение является по своей природе термофлуктуационным процессом, в котором внешняя сила не осуществляет непосредственно разрыва межатомных связей, а лишь препятствует рекомендации разорванных связей. Зависимости между временем до разрушения, скоростью ползучести с (скорости накопления деформации) и напряжением а имеют вид  [c.262]

В институте электросварки с участием сотрудников института металлофизики НАНУ проведены сравнительные исследования процессов массопереноса при различных способах сварки давлением — ударом в вакууме (УСВ) и контактной сваркой сопротивлением (КСС), выполняемой без использования защитных газовых сред или вакуума. В обоих случаях торцы из низколегированной стали нагревались го температуры 1100 С, а деформация выполнялась с повышенной скоростью (0,15 м/с). Нагрев деталей сечением до 500 мм КСС выполнялся на универсальной стыковой машине импульсами тока до 20000 А и длительности нагрева до 20 с, а нагрев образцов такого же сечения при УСВ производился электронно-лучевым нагревателем за 180 с. Время про1 екания процесса пластической деформации при КСС и УСВ составляло порядке 10 с. В обоих случаях величина деформа-  [c.159]

Универсальные математические модели тепловых процессов, внешнего магнитного поля и упругих деформаций ЭМУ могут быть построены, как уже отмечалось, на основе методов электроаналогии [7]. Такая возможность основывается на хорошо известном подобии описания указанных процессов и процессов распределения тока в электрической цепи (табл. 5.1) и позволяет применить удобный аппарат теории электрических цепей. Связь между соответствующими величинами различной физической природы задается при электроаналогии через масштабные коэффициенты. Рассмотрим кратко эти вопросы, не останавливаясь на физических особенностях явлений.  [c.118]

Применительно к ЭМУ системная модель включает в себя универсальные детерминированные модели электромеханических преобразований, нагрева, деформаций и магнитных проявлений, блоки реализации статистических испытаний, автоматизации перестройки исходных моделей, моделирования условий производства и эксплуатации (рис. 5.(2). Детерминированная часть ее предполагает наличие моделей разных версий для анализа влияющих физических процессов, примеры построения которых даны в 5.1,2 и 5.1.3. Часть входных параметров являются общими для всех блоков, другими блоки обмениваются между собой в процессе работы, в том числе за счет использования обратных связей (земпературы, магнитных потоков рассеяния, изменения момента сопротивления в опорах и нр.). Изложенные  [c.141]


Для раскрытия уравнения деформации используем универсальные уравнения метода начальных параметров. Рационально расположитм начало координат в сечении А, т. к. в защемлении 0о=О, Уо 0.  [c.16]

К испытанию на сжатие прибегают реже, чем к испытанию на растяжение, так как оно не позволяет снять все механические характеристики материала, например ов, поскольку при сжатии пластичных материалов образец превращается в диск. Испытанию на сжатие в основном подвергаются хрупкие материалы, которые лучше сопротивляются этой деформации. Этот вид испытаний производится на специальных прессах или на универсальных статических машинах. Если испытывается металл, то изготовляются цилиндрические образцы, размер которых выбирают из соотношения 3d > / > d. Такая длина выбирается из сообралсений большей устойчивости, так как длинный образец помимо сжатия может испытывать деформацию продольного изгиба, о котором пойдет речь во второй части курса. Образцы из строительных материалов изготовляются в форме куба с размерами 100 X ЮО X ЮО или 150 X X 150 X 150 мм. При испытании на сжатие цилиндрический образец принимает первоначально бочкообразную форму. Если он изготовлен из пластичного материала, то дальнейшее нагружение приводит к расплющиванию образца, если материал хрупкий, то образец внезапно растрескивается.  [c.58]

Сформулировать универсальный критерий равнопрочно-сти, учитывающий всю совокупность причин, практически влияющих на прочность (тип напряженного состояния, состояние материала, характер действия на тело внещних факторов), до сих пор не удалось. Поэтому в настоящее время при расчете на прочность используется несколько теорий прочности, взаимно дополняющие друг друга. Теории прочности, объясняющие возникновение опасного состояния разрушением, называются теориями хрупкого разрушения, а объясняющие его возникновение появлением недопустимых пластических деформаций — теориями пластичности. Любая теория прочности проверяется, а иногда и выдвигается опытом. Для этого и нужны испытательные мащины, образцы и установки, позволяющие создавать произвольные напряженные состояния.  [c.299]

Закалочные станки делятся на универсальные и специализированные. Универсальные служат для обработки деталей одного вида, например валов, отличающихся по длине и диаметру. Разра- ботан ряд станков этого типа. Выпускаются тяжелые станки серии ИЗУВ для закалки крупногабаритных валов, обойм и зубчатых колес. Часто для закалки валов и других длинных изделий используются переделанные токарные или другие металлорежущие станки. В процессе закалки валы могут располагаться горизонтально или вертикально. В схеме с подвижным индуктором, используемой для закалки длинных и тяжелых валов, предпочтительно вертикальное положение детали, дающее меньшую ее деформацию и позволяющее приблизить зону охлаждения к индуктору. Для небольших валов, осей и пальцев можно рекомендовать схему с горизонтальным или наклонным движением деталей сквозь неподвижный индуктор. Крупногабаритные детали, например направляющие станков, закаливаются в горизонтальном положении непрерывно-последовательным способом. Нагрев осуществляется плоским индуктором (см. рис. 11-7), который крепится к выводам трансформатора, расположенного на подвижной части — суппорте станка. Подвод энергии к закалочной головке осуществляетея гибким кабелем. Длина закаливаемых деталей достигает 2700 мм при ширине до 650 мм.  [c.185]

Выше были рассмотрены случаи, когда в идеальном кристалле находится только один точечный дефект (или несколько невзаимодействующих дефектов). Перейдем теперь к рассмотрению взаимодействия точечных дефектов. Следует отметить, что дефекты могут быть двух типов 1) дефекты, которые взаимодействуют и не находясь в кристалле (атомы примеси замещения и внедрения), и 2) дефекты, для которых вне метал.лической матрицы вообще но имеет смысла говорить о взаимодействии (вакансии, пары из вакансии и атома примеси). Металлическая матрица вызывает существенное изменение взаимодействия в первом случае и полностью определяет его во втором. В частности, деформация решетки, вызванная дефектами, ггриводит, как уже отмечалось во введении, к их деформационному взаимодействию, обладающему весьма универсальным характером.  [c.113]

Рис. 1 9. Схема универсальной машины силой 10 Г с электронным силоизмерителем и нагревателем / — основание, 2 — колонны, 3 — неподвижный траверс, 4 — Динамометр, 5 — подвижный траверс, 6 — коробка передач, 7 — пульт управления, 8 — силоизме-рнтель, 9 — диаграммный аппарат, 10 — канал силы, П — контактные устройства, 12 — канал деформации, 13 — нагреватель. Рис. 1 9. Схема <a href="/info/33390">универсальной машины силой</a> 10 Г с электронным силоизмерителем и нагревателем / — основание, 2 — колонны, 3 — неподвижный траверс, 4 — Динамометр, 5 — подвижный траверс, 6 — <a href="/info/101">коробка передач</a>, 7 — <a href="/info/34428">пульт управления</a>, 8 — силоизме-рнтель, 9 — диаграммный аппарат, 10 — канал силы, П — <a href="/info/292566">контактные устройства</a>, 12 — канал деформации, 13 — нагреватель.
Наиболее универсальным, а при определенных условиях и единственным видом взаимодействия дислокаций, имеющем место при любых температурах и деформациях металлов и сплавов, является дальнодей-ствующее взаимодействие дислокаций [233]. Наличие полей внутренних напряжений дислокационных ансамблей оказывает значительное влияние на движение дислокаций, точечных дефектов и в целом на эволюцию дислокационной структуры в процессе пластической деформации.  [c.99]

Покрытие из интерметаллических порошков, нанесенное на плоскую металлическую поверхность струйно-плазменным методом, толщиной 0,3—1,0 мм отделяется от основы механически благодаря малой прочности соединения с полированной поверхностью плоского металлического образца. Предварительно, до отделения покрытия, из образца вырезается электроэрозионным методом призма сечением 4x20 мм. Отделенные от основы пластинки покрытий помещаются на опорные призмы установки и нагружаются сосредоточенной нагрузкой до разрушения. Определяется Овизг — предел прочности при изгибе и / — прогиб, характеризующий величину упругой деформации покрытия. Этот метод имеет, по нашему мнению, преимущества перед более универсальными испытаниями на растяжение, описанными выше. Он исключает опасные перекосы, неизбежные при закреплении образцов в захватах машины, и обеспечивает надежные результаты, удобные для сравнцтельных оценок качества различных  [c.54]

Фирма MTS (США) выпускает универсальные гидравлические и гидрорезонансные испытательные машины различной мощности — от 0,1 до 5 Мн (от 10 до 500 тс), предназначенные для проведения испытаний на статическое растяжение, сжатие и изгиб, на малоцикловую усталость, кратковременные или длительные испытания на ползучесть, усталостные испытания при постоянной амплитуде с различной формой цикла (синусоидальная, треугольная, трапецевидная и др.), усталостные испытания с программным изменением ам плиту-ды, среднего уровня напряжений и частоты, а также с изменением указанных параметров по случайному закону. Кроме того, машины оборудованы системой обратной связи и могут воспроизводить эксплуатационный цикл нагружения, записанный на магнитофонную ленту или перфоленту. При усталостных испытаниях всех видов осуществляют регистрацию скорости роста трещин, накопления усталостных повреждений и пластических деформаций и оценивают чувствительность металла к концентрации напряжений по динамической петле гистерезиса. Частота циклов может изменяться от 0,0000 1 до 990 Гц. Особенность компоновки машин этой фирмы — разделение на отдельные независимые блоки исполнительного, силозадающего и програм-мно-регистрирующего агрегатов.  [c.206]


Универсальная испытательная машина УМЭ-10Т изготовления ЗИМ, [120] предназначена для испытания в широком диапазоне скоростей деформирования при статическом и низкочастотном знакопостоянном и знакопеременном растяжении-сжатии или изгибе с заданными амплитудами нагрузок до ЮОкН (10 тс) или деформаций при нормальной и повышенной температурах, в том числе на ползучесть и релаксацию. Силоизмеритель электронный.  [c.243]

Универсальные установки для изучения прочности материалов при высоких температурах методами растяжения, микротвердости известны с 1959 г. Первая такая установка типа ИМАШ-9 служила для измерения микротвердости при растяжении и нагреве в вакууме до температуры 1570 К [ИЗ, 114, 118]. Более совершенная серийная установка ИМАШ-9-66 предназначена для оценки прочности металлов и сплавов при температурах от 300 до 1400 К в вакууме и защитных газовых средах [118, 119, 134]. Основным недостатком этих установок является применение только одного метода нагрева путем прямого пропускания через образец электрического тока низкого напряжения промышленной частоты. В последние годы показано, что при пропускании тока через образец возникает электропластический эффект уменьшения сопротивления металлов пластической деформации [84, 85, 182, 195, 196, 197, 198]. Установки типа НМ-4 японской фирмы Юнион оптикал используют радиационный нагрев образца при растяжении до 1770 К и при измерении микротвердости до 1270 К [119, 226].  [c.95]

Радон и Лоренц [7] собрали и испытали ряд микрореактивов. Для большинства медных сплавов можно считать пригодными солянокислые растворы хлорного железа. Для выявления микроструктуры медных сплавов нет универсальных правил. Способы микротравления зависят от химического состава отдельных сплавов и их состояния (холодная, горячая деформация и другие виды горячей обработки). Поэтому описанные реактивы можно видоизменять, чтобы обнаружить способ травления, который даст наилучшие результаты.  [c.197]

Отметим, что обычную уточненную теорию оболочек вполне можно использовать для анализа трехслойных конструкций, если иметь в виду, что их жесткость при изгибе и кручении обеспечивается несущими слоями, а сдвиг по толщине имеет место в слое (или слоях) заполнителя. Относительно небольшую нормальную деформацию заполнителя в большинстве случаев можно не учитывать. Однако этим эффектом нельзя пренебрегать при исследовании местной формы потери устойчивости (сморщивание обшивки). Так, универсальная теория, предложенная в работе Бар-телдса и Майерса [27], которая позволяет описать как местную, коротковолновую (сморщивание обшивки), так и длинноволновую (общую) формы потери устойчивости, учитывает податливость заполнителя в нормальном направлении.  [c.247]

Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]


Смотреть страницы где упоминается термин Деформация универсальная : [c.264]    [c.283]    [c.3]    [c.130]    [c.621]    [c.503]    [c.53]    [c.57]    [c.15]    [c.160]    [c.417]   
Нелинейная теория упругости (1980) -- [ c.136 ]



ПОИСК



Волна линейной плотности — универсальная модель бегущей волны деформации

Предельная плотность энергии деформации как универсальный критерий локального и глобального разрушения

Примеры универсальных деформаций для изотропных несжимаемых тел

Стокса — Дюгема — Фурье универсальная деформации

Универсальные деформации в общем случае

Универсальные деформации изотропных тел

Универсальные деформации несжимаемого материала

Универсальные статические деформации изотропных несжимаемых упругих тел

Универсальные статические деформации простых тел без внутренних связей и изотропных упругих тел

Универсальные уравнения для перемещений при различных деформациях Расчет балки на жесткость



© 2025 Mash-xxl.info Реклама на сайте