Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения газа в напряжениях

Уравнения движения газа в напряжениях  [c.105]

Учет свойства вязкости жидкостей и газов ведет к повышению порядка дифференциальных уравнений движения и в связи с этим появляются добавочные краевые условия на границах объема движуш ейся среды. Типичными примерами таких условий являются условие полного прилипания жидкости или газа к подвижным телам или неподвижным граничным стенкам и условие непрерывности трех компонент вектора силы напряжения на поверхностях контакта двух сред.  [c.253]


На основании уравнения количества движения для смеси газов и уравнения движения частицы определяются пульсационные скорости газа и частиц в конце существования моля (когда после выделения из одного слоя моль сливается с другим слоем). Расчет этих скоростей, а также относительной скорости газа (относительно частицы), показал, что пульсационные скорости газа и соответственно касательные напряжения под воздействием тяжелой примеси существенно уменьшаются.  [c.317]

Здесь пренебрегалось вкладом слагаемых, содержащих сдвиговые напряжения Т и тг, и вкладом переноса энергии из-за потока Лг. Это нетрудно обосновать оценками типа (4.3.15). Далее Pq — скорость газа в зоне, где нет частиц ( i= 1), например, на входе в слой. Уравнения притоков тепла фаз (4.3.40) нужны для определения температур фаз и здесь рассматриваться не будут. Отметим, что последнее уравнение (4.3.44) отражает равенство генерации хаотического движения частиц из-за работы сил Магнуса и диссипации этого движения в тепло из-за столкновений. Из него следует с учетом (4.3.32) и (4.3.36)  [c.223]

Если в уравнение движения в напряжениях (П1.25) подставить значения компонентов тензора напряжений, согласно обобщенному закону Ньютона (П1.33) и (П1.34), то получим уравнение движения сжимаемой жидкости или газа в проекции на ось х  [c.70]

Опыт показывает, что в потоках вязких жидкостей или газов около поверхности твердого тела или у границы двух потоков жидкости, движущихся с разными скоростями, действие сил вязкости в разных областях течения проявляется неодинаково. Оно проявляется заметно там, где возникают большие поперечные градиенты скорости и, как следствие, касательные напряжения велики. По мере увеличения расстояния от стенки действие сил вязкости ослабевает и становится исчезающе малым на сравнительно небольшом удалении, В обычных условиях течения скорость частиц жидкости относительно обтекаемой поверхности и на самой поверхности равна нулю с увеличением расстояния от стенки она быстро увеличивается, приближаясь к скорости внешнего потока О), где поперечные градиенты скорости практически равны нулю, а касательные напряжения, возникающие вследствие трения, пренебрежимо малы. Течение в области, удаленной от поверхности, можно считать совпадающим с потенциальным течением идеальной жидкости и применять к нему закономерности теории идеальной жидкости. Эту область называют потенциальным или внешним потоком. Тонкий слой жидкости, прилегающий к поверхности обтекаемого тела и заторможенный вследствие трения, называют динамическим пограничным слоем. В пределах пограничного слоя касательное напряжение от трения очень велико даже при малой вязкости жидкости, поскольку очень велик градиент скорости в направлении, перпендикулярном поверхности тела. Во внешнем потоке инерционные силы преобладают над силами вязкости, поэтому уравнения Навье—Стокса переходят в уравнения движения идеальной жидкости.  [c.18]


Если касательные напряжения на периметре трубы, омываемой газом (жидкостью), части периметра трубы, занятые газом (жидкостью), части сечения трубы, занятые газом (жидкостью), касательное напряжение на границе раздела фаз и границу раздела фаз обозначить соответственно через т ц,, гр (рис. 2), то уравнение движения (48 ) можно записать в двух видах  [c.35]

О неоднородных, многокомпонентных и многофазных средах уже была речь в 13 гл. II. Там же были выведены основные уравнения динамики и термодинамики такого рода сред, но был оставлен в стороне вопрос о раскрытии сущности тензоров напряжений и Р, относящихся к г-й компоненте (фазе) и смеси в целом, а также дополнительных тензоров (см. формулу (72) гл. II). Чтобы сделать основную систему уравнений движения неоднородной среды замкнутой, необходимо дополнительно ввести количественные закономерности, связывающие только что упомянутые тензоры с характеристиками движения и состояния отдельных компонент (фаз) и смеси их в целом. Можно было бы думать, что такие количественные связи должны быть по форме аналогичными тем реологическим законам, которые только что были введены для несжимаемых ньютоновских и неньютоновских жидкостей, а в дальнейшем и для газов (см. начало гл. XI).  [c.359]

Уравнение движения. Подставляя значение тензора напряжений Оцг = —в уравнение (1.9), получаем уравнение движения для идеальной жидкости (газа) в виде  [c.31]

Уравнение непрерывности и уравнения движения в напряжениях представляют систему динамических уравнений, описывающих взаимную связь между изменениями плотности и скорости, с одной стороны, и приложенными к жидкости или газу поверхностными и массовыми силами — с другой.  [c.100]

Вернемся к выведенным еще в гл. II уравнениям динамики сплошной среды (29), которые именовались уравнениями в напряжениях , и заменим в них напряжения гю формулам (12) настоящей главы. Тогда получим основную динамическую систему уравнений движения вязкого газа  [c.475]

Смысл величин Р ,. .., Р станет особенно выпуклым, если вспомним, как в кинетической теории газов получаются уравнения Навье — Стокса. Мы знаем, что ряд свойств газа, такие, как вязкость, диффузия, теплопроводность, обязан своим происхождением суммарному эффекту молекулярных движений, каковые в деталях мы описать не можем. Более того, в кинетической теории газов показывается что компоненты тензора напряжений в уравнениях Навье — Стокса  [c.693]

Эти уравнения называются уравнениями движения в напряжениях. Они верны не только для газа, но и для любой сплошной среды.  [c.107]

Основы учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса (1819—1903), который сформулировал закон линейной зависимости напряжений от скоростей деформаций, представляющий обобщение простейшего закона Ньютона, и дал в окончательной форме уравнения пространственного движения вязкой жидкости, получившие наименование уравнений Навье — Стокса. Используя специальные молекулярные гипотезы относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1821 г. Навье, в 1831 г. Пуассон (1781—1846) и в 1843 г. Сен-Венаи (1797—1866). Урав " нения Навье —Стокса в криволинейных координатах в 1873 г. вывел Д. К- Бобылев.  [c.26]

Для того чтобы записать в полной форме уравнения, выражающие законы сохранения импульса и энергии системы, состоящей из вещества и излучения (в общем случае неравновесного), удобно исходить из дивергентной формы уравнений, эквивалентных уравнениям непрерывности для соответствующих величин. Для движения идеального газа без учета излучения эти уравнения были сформулированы в гл. I (см. формулы (1.7), (1.10)). Уравнения для системы вещество полюс излучение легко записать путем непосредственного обобщения уравнений (1.7), (1.10) (заметим, что мы рассматриваем только нерелятивистские движения). Именно, к плотности импульса вещества добавим плотность импульса излучения 6 , а к тензору плотности потока импульса вещества П д — тензор плотности потока импульса излучения Т1 . Как известно, последняя величина эквивалентна тензору максвелловских напряжений электромагнитного поля. Точно так же к плотности энергии вещества добавим плотность энергии излучения С/, а к плотности потока энергии — поток энергии излучения /5, представляющий собой вектор Пойнтинга (импульс излучения связан с вектором Пойнтинга соотношением 6г = 8 с ).  [c.146]


Можно сформулировать и другие граничные условия, которые определяются для каждой конкретной задачи, причем граничные условия для вязкого газа отличаются от условий для идеальной среды. В частности, при исследовании движения вязкого газа в пограничном слое решения соответствующих уравнений должны удовлетворять условиям на поверхности и на внешней границе пограничного слоя. Согласно экспериментальным данным частицы газа как бы прилипают к поверхности и, следовательно, скорость на ней равна нулю. На внешней границе скорость будете такой, как в свободном (невязком) потоке, а напряжение трения равно нулю.  [c.127]

В третьем случае частицы, плотность которых велика, принимают участие в крупномасштабном турбулентном движении. В этом случае поток можно рассматривать как смесь тяжелого и легкого газов. Напряжение сдвига и коэффициент сопротивления, обусловленные присутствием твердых частиц, определяются уравнением  [c.236]

Схема кольцевого подъемного течения в вертикальной трубе дана на рис. 7.17. Такое течение можно рассматривать как раздельное движение потоков жидкости и газа (пара), для каждого из которых справедливо уравнение сохранения импульса (7.26). В адиабатных условиях в канале постоянного сечения отсутствуют потери давления, связанные с ускорением потока. На межфазной границе действует касательное напряжение, направленное противоположно в газовой и жидкой фазах. Форма межфазной поверхности — цилиндр диаметром d = d -28, где 5 — средняя толщина жидкой пленки.  [c.327]

Третий член правой части уравнения (295) представляет собой воздействие на частицы потока сил трения, вызываемых вязкостью. В дальнейшем, в процессе интегрирования уравнений (294)—(298), придется найти связь напряжений трения т,-/ с полем скоростей потока. Возвращаясь к формуле (286), можно ее трактовать как закон пропорциональности одной из касательных компонент тензора напряжения компоненте тензора скоростей деформаций. Обобщая закон Ньютона на случай произвольного движения жидкости или газа, будем предполагать, что тензор напряжений в движущейся жидкой или газообразной среде есть линейная функция тензора скоростей деформаций. Для большинства рабочих агентов энергетических машин эта гипотеза хорошо оправдывается на опыте и ее можно было бы назвать обобщенным законом Ньютона. Численное выражение искомой линейной связи можно легко написать, если дополнительно считать движущуюся среду изотропной, т. е. такой, у которой физические свойства не зависят от особых, заданных наперед направлений в пространстве. При этом коэффициенты линейной связи между тензором напряжений Р и тензором скоростей деформаций S должны быть скалярами и искомая связь будет иметь вид  [c.167]

Ряд простейших теорий [Л. 30, 93, 112, 139] основывается на том, что распад струи рассматривается как следствие нарушения равновесия свободной поверхности под действием сил поверхностного натяжения. Касательные напряжения на поверхности струи предполагаются при этом равными нулю. Возникшие в струе незначительные возмущения приводят к образованию волн с самопроизвольно увеличивающейся амплитудой. Этот процесс является ускоряющимся вследствие дополнительных возмущений, создаваемых относительным движением жидкости и газа. Уравнения неразрывности, движения и граничные условия, записанные через соответствующие пульсационные составляющие скорости и давления, могут быть в этом случае представлены в цилиндрической системе координат в следующем виде  [c.243]

Однако работа [Л. 1] выполнена с допущением, что физические параметры жидкости не зависят от температуры. Теплообмен при движении жидкости с переменной вязкостью впервые рассмотрен в работе Л. 2], где теоретически показано взаимодействие теплового и гидродинамического полей. Наиболее точные исследования по теплообмену в вязком потоке приведены в работе Л. 3], но эти исследования связаны с громоздкими расчетами нелинейных интегральных уравнений. Поэтому Г. Шу [Л. 3] удалось дать лишь оценку теплообмена в зависимости от направления теплового потока для двух случаев. В работе, [Л. 4] основное внимание уделяется напряжению сдвига в потоке газа при больших скоростях. Полной картины процесса теплообмена и гидродинамического сопротивления в вязком потоке ни одна из этих работ не отражает.  [c.237]

Газовая смазка осуществляется между двумя движущимися жесткими или упругими элементами трибосопряжения, расстояние между которыми весьма мало, обычно не превышает 50 мкм. Для получения интефальных параметров газовой смазки (несущей способности, жесткости, демпфирования) нужно знать закон изменения состояния газа в каждой точке зазора и, следовательно, физические свойства и общие уравнения движения газов в мадых зазорах. Так, коэффициент вязкости газов при давлении 0...10 МПа изменяется не более чем на 10 % по сравнению с атмосферным давлением. Так же ведет себя газовая смазка при напряжениях, поэтому при практических расчетах изменением вязкости от давления часто пренебрегают.  [c.241]

В важном частном случае р = onst и Q = О (второе несущественно) уравнения (6.6) и (6.7) становятся линейными и переходят в хорошо известные уравнения математической физики, описывающие движение электрического тока через проводящие поверхности произвольного вида (Н. А. Умов, 1875), течение несжимаемой жидкости в слое переменной толщины и ламинарную фильтрацию в неоднородных слоях (О. В. Голубева, 1950, 1953 П. Я. Полубаринова-Кочина, 1953), движение газй в плоскости годографа скорости (Л. С. Лейбензон, 1935), течение вязкой жидкости в подшипнике, напряженное состояние анизотропных валов и неоднородных пластинок. Математическая теория этих уравнений существенно развита в работах И. Н. Векуа, Л. Берса и А. Вайнштейна, М. А. Лаврентьева и Б. В. Шабата, С. Бергмана, Г. Н. ПоЛожего. Эффективные решения краевых задач для уравнений (6.6) и (6.7) представляются через аналитические (гармонические) функции и фундаментальные  [c.149]


Гидродинамические уравнения движения газа с учетом процессов теплопроводности и внутреннего трения содержат тепловой поток ц (диссипативная часть потока энергии ц) и тензор вязких напряжений айр (диссипативная часть потока импульса Пар). Эти уравнения приобретают реальный смысл после того, как ц и Оар выражены через градиенты температуры и скорости газа. Но обычные выражения, линейные по этим градиентам, представляют собой лишь первые члены разложения по степеням малого отношения // —длины свободного пробега к характерным размерам задачи (его называют числом (нудсенаК). Если это отношение не очень мало, может иметь смысл введение поправок, учитывающих члены следующего порядка малости по // . Такие поправки возникают как в самих уравнениях движения, так и в граничных условиях к ним на поверхности обтекаемых газом тел.  [c.67]

Чтобы иметь представление о порядке величин различных параметров, расс.мотрим случай взаимодействия между твердыми частицалш и стенкой при движении частиц в турбулентном поле, когда диаметр частиц мал, например менее 1 мк, отношение масс газа и твердой фазы достигает 3, а отношение плотностей равно, например, 2000. Как указано выше, коэффициент трения на стенке вследствие удара твердых частиц составляет величину порядка 0,1, а напряжение сдвига — порядка 0,5-10 кг/см , для газа с коэффициентом трения 0,001 напряжение сдвига равно 0,5-10" кз/сэ4 . Однако, как можно видеть по результатам измерений для трубы (разд. 4.1), интенсивность действительных столкновений со стенкой на порядок меньше вычисленной величины из-за подъемной силы, действующей на частицы в вязком слое [уравнение (2.23)1.  [c.236]

Число Трусделла характеризует нелинейную зависимость тензора вязкого напряжения от, тензора скорости деформации. Соотношение (1-5-54) обнаруживает, что влияние нелинейности в такой зависимости аналогично влиянию параметра нейдеальной дискретности. Число Предводителева характеризует дискретную структуру газа. В одной из наших работ [Л.1-17] было показано, что уравнение движения жидкости, состоящей из системы вихревых трубок, описывается аналогичным уравнением вида (1-5-52), если в последнем предполагается, что 7 = 5/3 (одноатомный газ). В этом случае коэффициент р или число Предводителева характеризует асимметрию тензора вязкого напряжения, появляющуюся за счет весьма выраженной дискретной структуры жидкости. Физическая картина такой дискретности следующая жидкость состоит из отдельных вихревых трубок, на границе контакта вихревых трубок происходит разрыв гидродинамической скорости движения.  [c.42]

Этот параметр полезен для оценки важности учета радиационных напряжений в уравнении движения. На фиг. 13.1 приведено несколько типичных зависимостей Rp от темперагуры и давления. Величина очень мала, если температура не слишком высока или давление газа не слишком мало. Поэтому при температурах и давлениях, встречающихся в большинстве технических приложений, Rp. очень мало, и радиационными эффектами в уравнении движения можно пренебречь для излучающего газа умвн ние движенля будет таким же, как и для неизлучающего. В тензорных обозначениях это уравнение имеет вид )  [c.528]

В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

Важное отличие метода Греда от метода Энскога — Чепмена заключается в том, что теперь такие моменты скоростей, как тензор вязких напряжений, тепловой поток и т. д., рассматриваются не как вспомогательные переменные, выражения которых необходимо знать для получения уравнений гидродинамики, а как вполне самостоятельные переменные, характеризующие движение газа. Для таких высших моментов следует рассматривать свои уравнения наряду с уравнениями для Иц, г а, Та-  [c.150]

Теория движения вязкой жидкости в форме, весьма близкой к современной, была опубликована в 1845 г. Стоксом (1819—1903), который, выделив из общего перемещения элемента жидкости деформационную часть, указал простую линейную зависимость возникающих в жидкости напряжений от скоростей деформаций, г. е. дал обобш,е-ние ранее уже упомянутого закона Ньютона. До Стокса, основываяс1. на некоторых специальных молекулярных гипотезах относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1826 г. Навье (1785—1836), в 1831 г. Пуассит (1781 —1846) и в 1843 г. Сеп-Венан (1797—1886).  [c.27]

Уравнения движения для вязкой, сжимаемой жидкости приводим здесь в окончательном виде, без вывода ). Они значительно отличаются от уравнений движения для вязкой, несжимаемой жидкости. Дело в том, что в случае вязкой, сжимаемой жидкости приходится вводить, наряду с коэффициентом-вязкости [1, также другой коэффициент, характеризующий вязкость мы обозначим этот коэффициент через Я. Если предаоло-жить, по аналогии с тем, как это имеет место для несжимаемой жидкости, что и в газе давление в каждой точке есть взятое с обратным знаком -среднее арифметическое из нормальных напряжений, приложенных к трем взаимно перпендикулярным площадкам, проходящим 1ерез данную точку,  [c.532]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]


Нелинейные эффекты при движении однородной жидкости. Экспериментальные исследования образцов насыщенных горных пород (Д. А. Антонов, 1957 Н- С. Гудок и М. М. Кусаков, 1958 Д. В. Кутовая, 1962 В. М. Добрынин, 1965) выявили существенно нелинейный характер зависимости деформаций скелета сцементированной породы (и ее пористости) от больших изменений напряженного состояния. Известны попытки учета нелинейного характера пористости в уравнении пьезопроводности (А. Н. Хованский, 1953). Однако определяющие отклонения от линейной теории упругого режима связаны с изменениями проницаемости, сопутствующими указанным деформациям. Эти изменения проницаемости особенно велики в трещиновато-пористых средах. В связи с этим была развита схема нелинейно-упругого режима фильтрации, учитывающая отклонения от линейной связи пористость — пластовое давление и сопутствующие изменения проницаемости. При этом сначала (А. Бан, К. С. Басниев и В. Н. Николаевский, 1961) использовалось приближение экспериментальных зависимостей степенными рядами. Результирующие уравнения были выписаны и для случаев фильтрации капельной жидкости в пористых (или чисто трещиноватых) и трещиновато-пористых пластах и фильтрации газа в пористых (чисто трещиноватых) пластах. Были построены стационарные решения (А. Бан и др., 1961, 1962), соответствующим образом обобщающие формулу Дюпюи. Полученные формулы использовались для обработки индикаторных линий скважин, т. е. зависимостей дебит— пластовая депрессия , получаемых при исследовании скважин на установившийся приток (А. Бан и др., 1961 К. С. Басниев, 1964).  [c.633]

Ключевым параметром базовых моделей и атрибутов AVO анализа является отношение Vp/V Это не случайно отношение К /К давно известно сейсморазведчикам как мощный индикатор вариаций вещественного состава пород - их литологии и типа флюидонасыщения, и кроме того, скорость - параметр, непосредственно измеряемый в разведочной сейсмологии. Однако изначальные уравнения Цёппритца выводились из условий непрерывности напряжений и смещений на границе раздела для уравнений движения (1.15)-(1.17), включающих не скорости и плотности, как модели (6.1), (6.5), а плотности р и константы Ляме X и ц. Из этой пары константа ц определена как модуль сдвига (жесткость), а величина X была введена для упрощения формул и такого же четкого физического определения, как ц, не имеет. Её смысл можно установить из выражения К=Х + (2/3) ц. Реальное тело может иметь нулевую жесткость (у жидкостей и газов = О, т.е. нет сопротивления сдвигу) при ненулевой несжимаемости К = Kj = X, но не может иметь нулевую несжимаемость при ненулевой жесткости. Таким образом, константа X может рассматриваться как добавка к минимально возможной несжимаемости реального твердого тела, равной (2/3)ц.  [c.194]

Полученные системы уравнений предназначены для описания "быстрых" движений газа с большими градиентами газодинамических переменных (в первую очередь - для зоны головного скачка уплотнения) и поэтому не носят общего характера. Исключением являются уравнения термострессовой конвекции [И], когда в главном приближении по Кп —> О в уравнении импульса учитываются температурные напряжения.  [c.190]

Средняя скорость жидкости ш и образованные с ее помощью величины ЕиХбудут положительными при движении жидкой пленки в положительном направлении, т. е. вниз по стенке, и отрицательными при движении ее вверх. Аналогично квадрат средней сксрости газа и/ и касательные напряжения т положительны при движении газа вниз по стенке и отрицательны при его движении вверх. Знак перед Т определяется направлением движения жидкости и газа. При прямотоке, когда жидкость и газ движутся в одном направлении вниз (Q > О, т > О) или вверх (Q < О, т < 0)Г > О. При противотоке, т. е. когда газ движется вверх (т < 0) против направления стекания жидкой пленки (Q > 0) Г < О. Во всех уравнениях настоящей работы перед этими величинами стоят знаки.  [c.181]

Уравнения (6.32), (6.33), (6.39), (6.41), (6.43) и (6.46) учитывают общее движение, силовые поля, теплообмен и распределении по размерам. Логически можно обобщить их и на случаи с массо-обменом, химическими реакциями и т. д. Л1ожно было бы добавить, что в соответствии с обобщенным понятием многофазной среды в смеси газа с твердыми частицами, состоящими из одного вещества, частицы разных размеров, форм и масс, с разными электрическими зарядами, дипольными моментами или магнитными свойствами образуют разные фазы , помимо газовой. Для несферических частиц постоянные времени F ш G можно определить экспериментально. Поскольку учитывается взаимодействие между частицами, а внутренним напряжением в частицах прене-брегается, то эти соотношения применимы для объемных концентраций частиц в псевдоожиженном слое вплоть до 90 %, но неприменимы для плотных слоев (разд. 9.7). При этом нижний предел среднего расстояния между частицами до.чжен составлять от 2 до 3 диаметров частиц при расстоянии между частицами более 10 диаметров Fp и Gp можно не учитывать и Цт Рч Р lira о, = 0.  [c.286]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

Закон Ньютона позже был сформулирован в кинетической теории газов как закон переноса импульса молекул. Из уравнения (6) видно, что, когда V= onst, перенос количества движения отсутствует и касательное напряжение равно нулю, т. е. т = 0.  [c.13]

ЗАКОН [Гей-Люссака объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа Генри масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа Гука механическое напряжение при упругой деформации тела пропорционально относительной деформации Дальтона (кратных отношений если два элемента образуют друг с другом несколько химических соединений, то весовые количества одного из элементов, приходящиеся в этих соединениях на одно и то же количество другого, относятся между собой как небольшие целые числа общее давление газовой смеси равно сумме парциальных давлений, т. е. сумме давлений газовых компонентов ) Гульденберга и Вааге при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции Дебая теплоемкость кристалла при низких температурах пропорциональна третьей степени абсолютной температуры его движения точки положение материальной точки в пространстве при действии на нее внешних сил определяется зависимостью расстояния точки  [c.232]


Смотреть страницы где упоминается термин Уравнения движения газа в напряжениях : [c.183]    [c.66]    [c.26]    [c.648]    [c.821]    [c.25]    [c.101]    [c.129]    [c.12]   
Смотреть главы в:

Газовая динамика  -> Уравнения движения газа в напряжениях



ПОИСК



Газы Уравнение движения

Движение газов

Напряжения Уравнения

Напряжения. Уравнения движения

О газе в движении

УРАВНЕНИЯ движения газов



© 2025 Mash-xxl.info Реклама на сайте