Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Колебания изгибные

На практике формы колебаний лопаток различают по частоте нумеруя их по порядку возрастания собственной частоты, а раз-личия и сложность форм колебаний учитываются при выборе методов расчета собственных частот и форм колебаний. Изгибные формы колебаний поддаются достаточно точно расчетам сравни--тельно простыми методами, расчет высших изгибно-крутильных и пластиночных форм производится методами теории пластин и оболочек. В последнее время для расчета сложных форм колебаний лопаток широко используется весьма совершенный метод конечных элементов.  [c.264]


Здесь необходимо знать частоту изгибных колебаний оболочки о) при наличии давления p . Низшая зона резонанса наступает при значении Q, близком к 2w.  [c.498]

При расчете собственной частоты колебаний корпуса принимаем, в первом приближении, что он является изотропной гладкой цилиндрической оболочкой. Считаем, что колебания корпуса носят изгибный характер, а его минимальные частоты колебаний т = 1. Что касается действия на корпус газодинамических сил, то их мы не учитываем.  [c.221]

В качестве примера падения некоторых собственных частот с увеличением частоты вращения могут служить колебания системы, показанной на рис. 6.34. Здесь две группы радиальных консольных стержней закреплены на вращающемся кольце (оболочке). Первая группа — стержни, ориентированные свободными концами в сторону действия центробежных сил, а вторая — в противоположную. Увеличение частоты вращения приводит к росту собственных частот системы, характеризующихся преобладанием изгибных деформаций стержней первой группы и, напротив, вызывает падение частот системы, которым свойственно преобладание изгибных колебаний стержней второй группы,  [c.116]

Менее известны электромеханические ФВП с упругими колебательными системами в виде струн, мембран, пластин, оболочек. Струнные ФВП представляют собой конструктивно обособленные узлы или устройства, включающие механический резонатор с линейным одномерным распределением масс (т. е. струну) и встроенные элементы систем возбуждения и регистрации его колебаний — магниты, электроды и т. д. Как правило, струнные ФВП осуществляют преобразование силы натяжения струны в частоту одной из форм (обычно — низшей) ее собственных изгибных колебаний. На базе струнных ФВП созданы такие приборы, как датчики кажущихся ускорений (акселерометры), датчики давлений, датчики малых перемещений и др.  [c.444]

Применение МКЭ к задачам колебаний оболочек. Каждый из конечных элементов иа которые разбита срединная поверхность оболочки, можно рассматривать как пластину с двумя системами напряжений и деформаций — мембранной и изгибной. Вектор узловых перемещений, отнесенный к локальной системе координат элемента с номером k, имеет шесть составляющих  [c.189]

На рис. 6 приведены и другие примеры упругих систем, нагруженных параметрическими силами круговое кольцо, нагруженное равномерно распределенной радиальной периодической во времени нагрузкой (рис. 6, б), изгибно-крутильные колебания упругой балки, нагруженной периодическими силами в одной из главных плоскостей инерции (рис. 6, в), изгибные колебания пластин и оболочек, нагруженных периодическими силами, действующими в срединной поверхности, и т. п. (рис. 6, г, д).  [c.246]


При равных амплитудах напряжений и v = 0,3 декремент изгибных колебании полоски примерно в 4,2 раза больше декремента колебаний оболочки. При эксперименте обнаружено различие декрементов примерно в 2 раза. Приведенное сравнение подтверждает общий вывод работы [ 129] о существенном влиянии поверхностных слоев образца на суммарные потери.  [c.164]

Далее предполагаем, что /q больше, чем период осесимметричных колебаний оболочки Tq, а период изгибных колебаний T >>Tq. В качестве критерия динамической устойчивости обо-  [c.512]

Оболочка камеры подвергается прямому воздействию возмущающих сил давления газов. При совпадении частоты собственных колебаний конструкции с частотой колебаний давления-наступает состояние резонанса. Амплитуды колебаний оболочки растут, что непосредственно сказывается на ее работоспособности. Резонансные колебания могут иметь и более сложную природу, когда переменное осесимметричное давление газов вызывает изгибные (неосесимметричные) колебания оболочки ЖРД- Это явление называется параметрическим резонансом.  [c.358]

Таким образом, между критической нагрузкой осевого сжатия и частотой изгибных колебаний оболочки существует вполне однозначная связь, количественное выражение которой определяется характеристиками геометрии, жесткостей, а также выбором кинематической модели оболочки. Очевидно, что соотношения, подобные (3.60), можно получить для N yy и для других статических критических нагрузок. Поэтому оценки применимости кинематически однородных моделей, установленные в результате расчета частот собственных колебаний, позволяют однозначно судить о применимости таких моделей в статических расчетах слоистых оболочек. Данный вывод, в частности, полностью подтверждается многочисленными расчетами трехслойных оболочек, нагруженных осевым сжатием, внешним поперечным давлением и в случае комбинированного действия указанных нагрузок.  [c.150]

В гл. 6 освещены вопросы устойчивости оболочечных систем при неоднородных напряженных состояниях, вызванных действием ло-1 альных нагрузок. Рассмотрена устойчивость сферического сегмента, подкрепленного опорным кольцом, к которому приложены произвольные локальные нагрузки в его плоскости. При проведении исследований применялся модифицированный метод локальных вариаций. Решение основано на минимизации функционала энергии, составленного с учетом вида нагружения и конструктивных особенностей системы. В качестве примера рассмотрены задачи устойчивости сферы при нагружении двумя радиальными силами и упругим ложементом. Приведены результаты экспериментального исследования устойчивости и прочности сферических сегментов — сплошных и с отверстиями — и прочности колец при локальных нагрузках. Исследования проведены на специальной установке для исследования несущей способности оболочек при локальном нагружении. Получены кинограммы процесса потери устойчивости системы. Рассмотрена задача динамической устойчивости цилиндрической оболочки при импульсном нагружении подкрепляющего кольца. Материал оболочки и кольца принят упругим или нелинейно-упругим. Рассмотрено взаимодействие симметричных и изгибных колебаний системы с построением областей динамической устойчивости.  [c.5]

Исследуем взаимодействие осесимметричных и изгибных форм колебаний, приводящее к возникновению неустойчивых форм движения. Оболочка для кольца является некоторым упругим основанием, препятствующим его движению. Влияние оболочки при рассмотрении движения кольца под действием импульсного давления учитывается введением контактных усилий взаимодействия, определяемых при решении соответствующих контактных задач сопряжения (см. гл. 4).  [c.216]

Изгибные колебания, возникающие вследствие неизбежного отклонения импульса от равномерного, определяют неустойчивое движение оболочки. Для коэффициентов и с получим уравнения типа уравнений Матье, определяющие области неустойчивого движения системы  [c.220]


Рэлею мы обязаны крупным сдвигом в теории колебаний тонких оболочек. Здесь надлежит иметь в виду два вида колебаний 1) колебания растяжения, при которых срединная поверхность оболочки подвергается растяжению, и 2) колебания изгиба без растяжения. В первом случае энергия деформации оболочки пропорциональна ее толщине, во втором—кубу толщины. Опираясь теперь на принцип, согласно которому при заданных перемещениях энергия деформации оболочки должна быть наименьшей, Рэлей приходит к выводу, что если толщина оболочки неограниченно уменьшается, то действительное перемещение сведется к чистому изгибу, насколько это будет совместимо с заданными условиями . Используя этот вывод, он исследует ) изгибные колебания цилиндрической, конической и сферической оболочек и приходит к результатам, удовлетворительно согласующимся с экспериментами.  [c.405]

Все приведенные расчеты основываются на линейной теории звукового поля без учета вязкости среды. При возбуждении изгибных круговых бегущих волн в цилиндрической оболочке или в пластинке (с помощью подходящего механизма) законность подобных расчетов не вызывает сомнения, так как радиальные и тангенциальные скорости остаются намного меньше скорости звука. Однако при получении бегущих волн путем вращения сферы с бороздками вязкостные эффекты при больших окружных скоростях, когда с сравнимо с с, безусловно играют большую роль пограничный слой среды будет увлекаться бороздками, и в результате вращающаяся зубчатка, как бы обволакиваясь прилипшим слоем, станет более гладкой, чем это соответствует действительной форме бороздок. Отсюда можно сделать предположение, что амплитуда радиальных колебаний уменьшится и эффективность излучения будет меньше, чем дает теоретический расчет без учета вязкости. С другой стороны, из аэродинамики известно, что при тангенциальных скоростях, приближающихся к скорости звука, каждая неровность на поверхности вызывает возникновение ударной волны. Очевидно, что так же должны действовать и бороздки на поверхности вращающейся сферы, и тогда следует ожидать значительной интенсивности звукового излучения.  [c.253]

Задача динамической устойчивости для упруго-пластической оболочки с начальными несовершенствами решалась А. К. Перцевым (1964). Автором рассмотрен процесс потери устойчивости круговой цилиндрической оболочки, находящейся под действием внешнего гидростатического давления, к боковой поверхности которой приложена динамическая нагрузка. Считалось, что в пластических зонах компоненты напряжения остаются постоянными. Далее вводилась функция напряжений для прогибов и начальной погиби. Влияние жидкости на изгибное движение оболочки учитывалось приближенным коэффициентом. В результате ряда допущений оказалось, что уравнение неразрывности может быть проинтегрировано точно, а уравнение движения — методом Бубнова — Галеркина. В итоге-автор проанализировал поведение коэффициента перегрузки, определяющего превышение критической динамической нагрузки над соответствующей статической. С увеличением длительности действия нагрузки коэффициент перегрузки уменьшается, а при значениях длительности, равных или больших трех периодов собственных колебаний, становится практически равным единице.  [c.322]

Уравнения теории пологих оболочек для динамического случая. Пусть колебания носят преимущественно изгибный характер. Тогда в выражениях (4) для компонентов изменения кривизны можно пренебречь вкладом тангенциальных компонентов вектора смещения  [c.422]

В томе III при изложении расчетов на прочность и ползучесть лопаток турбомашин и вращающихся неравномерно нагретых дисков, а также расчетов пружин центробежных муфт и регуляторов, при исследовании ряда вопросов упругих колебаний и, в частности, изгибных колебаний, критического числа оборотов валов и колебаний пружин, при изложении некоторых вопросов усталостной прочности, при рассмотрении динамической устойчивости сжатых стоек и инженерной теории удара, при изложении расчетов на устойчивость сжатых стоек с промежуточными опорами, расчета на устойчивость естественно-закрученных стержней, витых пружин, кольцевых пластин и тонкостенных оболочек вращения — были использованы исследования авторов. книги, проведенные ими в последние годы.  [c.5]

Динамика оболочек рассматривалась многими выдающимися исследователями, одним из первых был Рэлей с его теорией изгибных колебаний [9]. Для оболочек характерна высокая плотность собственных частот, на этом основаны специальные асимптотические методы расчета [12, 21]. Не затрагивая множества конкретных решений, ограничимся основными уравнениями и вытекающими из них общими положениями.  [c.246]

В работе [3.1431 осесимметричная задача об изгибных колебаниях тонкой упругой сферической оболочки приведена к решению системы двух дифференциальных уравнений, содержащих прогиб и силовую функцию. Получено решение этой системы при гармонических колебаниях в функциях Лежандра и приведены результаты расчета низшей частоты. Неосесимметричные колебания полусферической оболочки со свободным краем рассмотрены в предположении о мембранном характере деформации. Приведено сопоставление частот чисто изгибных колебаний и колебаний растяжения.  [c.208]


Расчеты производим при различных углах среза a v. Значения приведенной частоты Хты в зависимости от для трех значений угла a v приведены на рис. 14.26. При уменьшении угла среза a v от 90 до 30° крутизна кривых возрастает. Это объясняется тем, что по мере уменьшения угла a v возрастает доля изгибной энергии деформации в общей потенциальной энергии колеблющейся оболочки. На рис. 14.27 показаны низшие формы колебаний жестко защемленного сферического купола с углом среза а у = 30°, /А = 200, 100.  [c.355]

Следовательно, частоту свободных изгибных колебаний цилиндрической оболочки в этом случае можно определить по зависимости  [c.358]

Как и для случая изгибных колебаний, можно получить решения уравнения (8.168) и при других краевых условиях. Если для оболочки со свободно опертыми концами при колебаниях возникает , целое число полуволн т = 1, 2, 3,..., оо, то для случая, когда один или оба концевых сечения заделаны, по образующей цилиндра возникает нецелое число полуволн, а именно оболочка с одним свободно опертым, другим заделанным концом т =1,25 2,25 3,25 4,25 оболочка с двумя заделанными концами /тг"= 1,506 2,5 3,5 4,5. Зависимость же для частоты приближенно сохраняет вид (8.170) с указанными особенностями относительно волнообразования.  [c.373]

Используя указанные соотношения, получим, что для трансверсально-изотропной пластины с теми же параметрами, что и для сферического слоя, скорость изгибной волны определяется как Си О 296с 2 - Поэтому можно считать, что первый резонанс соответствует резонансу оболочки при изгибных колебаниях. Второе резонансное значение отвечает продольной волне.  [c.277]

Донг [811 получил решение уравнений обобщенной теории Доннелла, определяющее собственные частоты цилиндрических оболочек с произвольным набором ортотропных слоев и с различными граничными условиями. Узловые линии, так же как и в изотропных оболочках, образуют прямоугольную сетку. Берт и др. [37] рассмотрели аналогичную задачу на основе более точной теории первого приближения Лява. Найденные ими значения частот в общем достаточно хорошо согласовались с рерчльтатами Донга, за исключением низших частот, которые у Донга оказались завышенными. В работе Берта и др . на примере двухслойной ортогонально-армированной цилиндрической оболочки из боро-пластика проиллюстрировано влияние эффекта связанности мембранных и изгибных деформаций. Рассматривались также различные ортогонально-армированные структуры, включающие три слоя одинаковой толщины. Было установлено, что поведение оболочек, армированных по схемам О—К—О и О—О—О (О соответствует слою, уложенному в осевом направлении, К — слою, уложенному в кольцевом направлении), почти не различается. Также Мало отличаются друг от друга оболочки, армированные по схемам К—К—О и К—К—К. При всех четырех схемах армирования оболочка имеет,примерно одинаковую собственную частоту, соответствующую первому тону колебаний в осевом направлении и второму (п = 2) в окружном. При п = 1 армирование по схемам О,—О—О и О—К—О приводит к более высоким значениям частоты, а при относительно более высокие значения  [c.239]

Динамический анализ оболочек с общим характером анизотропии (т. е. оболочек из ортотропного ориентированного произвольным образом материала) был впервые проведен Кунуккассе-рилом [160], который показал, что обычные формы колебаний, узловые линии которых образуют прямоугольную сетку, не могут быть решениями уравнений движения. Причиной этого является наличие в соотношениях упругости смешанных коэффициентов с индексами 16 и 26. Представив решение в форме спиральной волны, Кунуккассерил изучил распространение волн, связанных с тремя основными формами колебаний — радиальной, осевой и крутильной. Для оболочек конечной длины было рассмотрено только два 5ида колебаний — осесимметричные (получено точное решение) и чисто изгибные (приближенное решение методом Релея).  [c.240]

В этом эксперименте кольцевая изгибная жесткость определялась динамическим методом, суть которого состоит в определении собственной частоты колебаний исследуемой системы и пересчете найденной частоты в жесткость. Оболочка устанавливалась в горизонтальном положении на столе электродинамического вибратора ВЭДС-400, оболочка закреплялась между двумя призмами (рис. 2). Собственная частота колебаний такой системы определялась как частота резонанса, соответствующего эллиптической деформации поперечного сечения оболочки. Расчет низших собственных частот производился по формуле  [c.215]

Асимптотическое распределение собственных частот для некоторых классов упругих систем. Данные об асимптотических распределениях даны в табл. 3. Для стержней, совершающих продольные или крутильные колебания, а также для колеблющихся струн собственные частоты распределены приблизительно равномерно. Асимптотически равномерное распределение наблюдается также для тонких пластин и для трехмерных упругих тел, все измгрения которых сопоставимы. Плотность частот для стержней, совершающих изгибные колебания, с увеличением частоты уменьшается. Более сложный характер носит распределение собственных частот для тонких упругих оболочек (см. гл. XIII).  [c.177]

Полуэмпирические формулы. Различными авторами были предложены полуэмпирические приближенные формулы для вычисления собственных частот преимуш,ест-венио изгибных колебаний круговых цилиндрических оболочек с заделанными торцами. В качестве ведем формулу  [c.223]

Исследование собственных колебаний конических оболочек на основе уравнений с большим показателем изменяемости. Применение общих уравнений затруднительно пз-за нх громоздкости и переменностн коэффициентов. Известны решения для конических оболочек на основе общих уравнений, полученные методом Бубнова—Галер-кина [87]. Для исследования преимущественно изгибных форм колебаний могут быть использованы уравнения (39) с применением метода Бубнова—Галеркина, Функции прогиба W и усилий х в случае опертой по контуру оболочки можно аппроксимировать при помощи рядов  [c.227]

Второй путь построения приближенных теорий заключался в введении гипотез физической природы относительно характера распределения смещений и напряжений. Использование вариационных принципов приводило к искомым уравнениям движения и граничным условиям. Таким образом были построены уточненные уравнения продольных и поперечных колебаний, учитывающие влияние инерции поперечного движения (Рэлей (1878)), теория изгибных колебаний круглой пластины (Кирхгоф (1852)), различные варианты теории цилиндрических и сферических оболочек [123]. С. П. Тимошенко (1921) показал, что учет деформации сдвига в поперечном сечении также важен при поиске адекватных моделей поперечных колебаний стержней. Отметим, что поправки на скорость распространения волн в бесконечном цилиндре, получаемые из уточненных теорий колебаний стержней, совпадали с несколькими первыми членами разложения точных решений Похгаммера — Кри.  [c.14]

В 1971 году в издательстве Наука вышел в свет сборник оригинальных работ Степана Прокофьевича Тимошенко Устойчивость стержней, пластин и оболочек , который был полностью просмотрен и одобрен автором. В этом сборнике дан был очерк жизни и научного творчества С. П. Тимошенко. Предлагаемый вниманию читателей сборник также был просмотрен автором и составлен согласно его желанию, хотя и выходит он уже после смерти С. П. Тимошенко, произошедшей 29 мая 1972 года в городе Вуппертале (Федеративная Республика Германия) на девяносто четвертом году жизни. Здесь содержатся двадцать шесть оригинальных работ С. П. Тимсшечко по проблемам прочности и колебаний элементов конструкции. Эти исследования посвящены изучению резонансов валов, несуш,их диски, эффективному анализу продольных, крутильных и изгибных колебаний прямых стержней посредством использования энергетического метода и применению общей теории к расчету мостов при воздействии подвижной нагрузки, вычислению напряжений в валах, лопатках и дисках турбомашин, расчету напряжений в рельсе железнодорожной колеи как стержня, лежащего на упругом сплошном основании, при статических и динамических нагружениях. Детально рассмотрены важные вопросы допускаемых напряжений в металлических мостах.  [c.11]


Переходя к обзору результатов исследований поведения многосвязных оболочек, остановимся прежде всего на работах, посвященных изучению влияния трещин различного типа на напряженно-деформированное состояние цилиндрических труб. Димарогонас [78] рассмотрел задачу об устойчивости длинной трубы (кольца), находящейся под действием внешнего давления. Считалось, что труба имеет продольную щель с глубиной,, не пр-ёвышающей толщину стенки. В работе получено трансцендентное уравнение для критического давления, решение которого представлено в функции от глубины трещины. Автором получены также формы потери устойчивости трубы с внутренними и наружными трещинами. На основе проведенной работы делается вывод о том, что трещины приводят к значительному понижению устойчивости труб. Следует отметить, что сегодня весьма актуальной является пробл ема влияния трещин на динамические параметры элементов несущих конструкций. Исследованию такой задачи посвящена работа Дитриха [79]. В ней приведены результаты исследования изменения собственных частот и форм колебаний труб при появлении различных трещин в сварных щвах. Теоретический анализ выполнен с помощью метода конечных элементов. В работе приведены полученные с помощью ЭВМ графики изменения частот восьми низших тонов изгибных колебаний трубы в зависимости от длины трещины. Соответствующие этим частотам формы колебаний представ- лены в трехмерной форме.  [c.301]

Переходя к колебаниям искривленных пластинок илн оболочек, мы встречаемся с новыми трудностями, связанными с тем, что между изгибными нормальными колебаниями и нормальными колебаниями, связанными с растяжением, нельзя провести резкой границы. Это уже было показано на примере с кольцом ( 51). Оказывается, однако, что если представить себе бесиредольное уменьшение толш ины пластинки, то нормальные колебания будут стремиться занять место в одной из двух определенных категорий. В одной категории частоты стремятся к определенным пределам это—колебания, связанные в основном с деформацией растяжения следовательно, этот случай аналогичен продольным колебаниям стержня, когда, как было показано, размеры нонеречного сечения не имеют значения. Во второй категории частоты уменьшаются беспредельно, так как в пределе они делаются пропорциональными толш ине пластинки, как и в случаях изгибных колебаний стержня или пластинки.  [c.201]

В акустических вопросах действительный интерес представляют только изгибные колебания. Если оболочка имеет вид тела враш ения, то узловые линии будут расположены, очевидно, по параллелям и равноотстояш,им меридианам. Каки в случае, разобранном в 51, они не являются линиями абсолютного покоя. Движение в касательной плоскости достигает здесь своего относительного максимума. Это обстоятельство находит практическое применение в колоколах. О теоретическом расчете частот настоящего колокола, конечно, не может быть и речи. Замечательно, однако, что никакого систематического  [c.201]

На базе асимптотического метода В. В. Болотиным (1963, 1966) изучены плотности собственных частот пластинок и пологих оболочек им показано суш ествование точек сгущения спектра изгибных колебаний, причем у оболочек неотрицательной кривизны имеется одна такая точка, а у оболочек отрицательной кривизны — две. Точки сгущения спектра собственных колебаний находятся при частотах СО1 = с Яа и а = = 1 с Щ I (при последней только в случае оболочек отрицательной кривизны) в этих выражениях с — скорость распространения волн сжатия растяжения в оболочке координатная сетка на срединной поверхности установлена так, что -йа I < I 1> причем Др — главные радиусы кривизны. Эмпирические данные, извлеченные из анализа сферических и круговых цилиндрических оболочек, подтверждают теоретические результаты. Тем не менее любопытно, что при указанных частотах характеристические линии уравнений безмоментных изгибных колебаний являются кратными однако кратные характеристики появляются и у оболочек положительной кривизны при частотах 0)1 и 0)3 (у сферической оболочки эти значения совпадают). Вопрос о связи между этими явлениями еще ждет ответа. Отметим здесь, что впервые исследования об асимптотическом поведении собственных частот колебаний цилиндрических и пологих оболочек проводились С. А. Терсеновым (1955).  [c.251]

В статьях Л. Е. Огеепзроп а [3.95—3.98] (1958) в постановке трехмерной теории упругости исследуются изгибные неосесимметричные колебания цилиндрической оболочки конечной длины при следующих граничных условиях на торцах О22 = иг=ие=0 и на внешней и внутренней поверхностях Ог0=аг0=0г2 = Р. Такие условия соответствуют случаю, когда края свободны для продольных перемещений и шарнирно закреплены относительно изгибных перемещений. Решения по 0 и 2 выбираются в виде произведения тригонометрических функций так, чтобы граничные условия на торцах удовлетворялись. Условия же на поверхностях приводят к частотному уравнению. Показано, что с увеличением относительной толщины область применимости классической теории смещается все дальше и дальше в сторону длинных волн. Теория типа Тимошенко редуцируется к точным решениям по частотам соответствующим выбором коэффициента сдвига. Необходимо отметить, что наличие коэффициента сдвига является недостатком теории, так как лишает возможности сделать какие-либо оценки. Кроме того, по фазовым скоростям нельзя судить об аппроксимации деформированного и напряженного состояния. Например, в работе [3.96] для толстой оболочки /г// =0.7 построено распределение перемещений и напряжений по толщине. Видно сильное отклонение от предположений теории оболочек о линейном распределении перемещений и напряжений и сггг=0-  [c.203]

Экспериментальные исследования частот свободных колебаний ортотропных цилиндрических оболочек. Для проверки некоторых теоретических выкладок П. П. Лихновым проведены эксперименты по определению частот изгибных колебаний. Методом непрерывной намотки были изготовлены оболочки из  [c.373]


Смотреть страницы где упоминается термин Оболочки Колебания изгибные : [c.13]    [c.228]    [c.516]    [c.143]    [c.281]    [c.251]    [c.493]    [c.567]    [c.200]    [c.46]    [c.493]    [c.567]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.427 ]



ПОИСК



Колебания изгибные

Колебания оболочек

Оболочки Колебания изгибные в вакууме — Частоты

Оболочки цилиндрические Колебания изгибные в вакууме — Частоты



© 2025 Mash-xxl.info Реклама на сайте