Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формулировка вариационного метода решения

Формулировка вариационного метода решения  [c.262]

Формулировка вариационного метода решения ИЛИ, если заменить суммирование по К интегрированием,  [c.265]

Задача оптимального проектирования, сформулированная выше, относится к наиболее общим и сложным типам вариационных задач, которые рассматриваются в теории оптимальных процессов [56]. Это обусловлено тем, что часть аргументов целевого функционала зависит от времени, а другая часть неизменна во времени. Обычно для решения подобных задач предлагается исходную формулировку преобразовать к формулировке чистых вариационных задач, у которых все аргументы являются функциями времени. Для этого необходимо векторы Z и К рассматривать в качестве новых векторов-функций времени, производные которых по времени тождественно равны нулю. Это увеличивает размерность и объем задачи и создает дополнительные трудности для применения вариационных методов решения.  [c.72]


Введение. Приступая к принципу Даламбера, мы покидаем область статики и попадаем в область динамики. Здесь задачи гораздо более сложны и их решение требует более совершенных методов. В то время как задачи статики для систем с конечным числом степеней свободы приводят к алгебраическим уравнениям, которые могут быть решены при помощи исключения переменных и подстановок, задачи динамики приводят к дифференциальным уравнениям. Настоящая книга посвящена главным образом формулировке и интерпретации основных дифференциальных уравнений движения, а не их окончательному интегрированию. Принцип Даламбера, который мы обсудим в настоящей главе, непосредственно ничего не дает для целей интегрирования. Однако он является важной вехой в истории теоретической механики, так как он дает интерпретацию силе инерции, а это существенно для дальнейшего развития вариационных методов.  [c.112]

Особенность предлагаемой книги состоит в последовательном изложении теоретических и прикладных аспектов расчета и оптимизации термоизоляции энергетических установок. В качестве теоретической основы постановки рассматриваемых задач теплопроводности в термоизоляции используется их вариационная формулировка, позволяющая применить приближенные аналитические и численные методы решения и оценить точность получаемых при этом результатов расчета, что имеет большое значение для инженерной практики, особенно в связи с необходимостью устанавливать пределы применения различных эмпирических формул, рекомендуемых в справочной литературе.  [c.4]

Во второй главе задача расчета термоизоляции сведена к решению соответствующей задачи теплопроводности при принятых условиях теплообмена с окружающей средой или теплоносителем с учетом (в общем случае) зависимости теплофизических характеристик термоизоляторов от температуры. Дана математическая формулировка задач теплопроводности в дифференциальной и интегральной (в частности, в вариационной) формах для теплоизоляционной конструкции в виде неоднородного анизотропного тела произвольной формы, и рассмотрены основные методы решения таких задач. На основе вариационной формулировки задачи теплопроводности построены двойственные оценки таких важных интегральных характеристик теплоизоляционной конструкции, как ее термическое сопротивление, проходящий через нее суммарный тепловой поток, средние температуры поверхностей теплообмена.  [c.4]


Формулировки статической и кинематической теорем, сводящих проблему приспособляемости к неклассическим вариационным задачам, а также строгие и приближенные методы решения последних даны в монографиях [16, 20].  [c.195]

Теория преобразования вариационных проблем дает в наше распоряжение все множество вариационных функционалов, точки стационарности которых являются решением задачи теории упругости или теории оболочек наиболее интересные из них приведены в гл. 3 и 4. В каждой вариационной формулировке задачи принципиально можно применить любой из прямых методов решения вариационные методы в аналитической, численной и комбинированной форме.  [c.169]

Главы 11 и 12 посвящены вариационным формулировкам и вариационным методам в деформационной теории пластичности и теории пластического течения соответственно. Рассмотрение деформационной теории мотивируется в основном методологическими соображениями (гл. И). Вариационная теория пластического течения излагается в последней главе части А (гл. 12). Здесь обсуждаются вариационные постановки задач как для идеально пластических тел, так и для упругопластических тел с упрочнением. Приводятся также некоторые основные сведения, относящиеся к теории предельной несущей способности, имеющей важные практические приложения. Вместе с тем следует отметить, что материал данной главы изложен слишком конспективно и в ней не освещены в достаточной степени такие важные для теории пластичности вопросы, как единственность решений и учет происходящих при деформировании пластических разгрузок. Отсутствуют и примеры применения вариационных методов для анализа упругопластических задач.  [c.6]

В-четвертых, когда точное решение задачи теории упругости не может быть найдено, вариационный метод зачастую обеспечивает формулировку для приближенного решения задачи, которая дает приближенное решение с заданной степенью точности. Здесь вариационный метод обеспечивает не только приближенное решение определяющих уравнений, но и условия приближенного выполнения граничных условий. Поскольку точное решение задачи теории упругости возможно лишь в очень редких случаях, то для практических целей следует удовлетвориться приближенными решениями. Теории балок, пластин, оболочек и многокомпонентных конструкций являются типичными примерами приближенных формулировок, демонстрирующими мощь принципа виртуальной работы и связанных с ним вариационных методов.  [c.20]

Вариационная формулировка уравнений движения (2.5.13) удобна при решении вариационно-разностным методом, методом конечных элементов или дискретно-вариационным методом [12,  [c.46]

Традиционный подход в механике газа, жидкости, твердого деформирования тела основывается на понятии сплошной среды [60, 67, 167, 174] и приводит к построению континуальных моделей сред, которые выражаются в терминах интегральных или дифференциальных законов сохранения для основных параметров среды, являющихся функциями непрерывных координат и времени, определенной гладкости и заданными начально-краевыми условиями, с учетом конкретных реологических свойств среды (упругость, вязкость, пластичность и т. д.). Для построения приближенных методов решения эффективны вариационные формулировки моделей [1, 23 33], следующие из общих вариационных принципов механики сплошных сред.  [c.83]

При исследовании и решении задач теории упругости широко применяются энергетические (вариационные) методы. В их основе лежит использование тех или иных энергетических теорем (вариационных принципов, а в задачах с краевыми условиями в форме альтернативных равенств и неравенств и вариационных неравенств). Подробное изложение энергетических теорем с анализом класса задач, для которых та или иная из них наиболее эффективна, содержится, например в [19, 90,93, 123, 134, 135, 138, 225]. В дальнейшем понадобится главным образом теорема о минимуме потенциальной энергии, а также теорема о минимуме дополнительной работы. Приведем необходимые определения и формулировки.  [c.94]


Включение в настоящий обзор раздела о вариационных методах может показаться неожиданным, однако эти методы находят в. теории оболочек со своими сложными соотношениями такое широкое и разнообразное применение, что следует подчеркнуть их значимость. Общая теория оболочек или же ее упрощенные варианты для решения каких-либо конкретных задач, конечно, могут быть построены без использования аппарата вариационных методов, но нужно привлечь внимание и к обратной точке зрения раз некоторая совокупность расчетных соотношений построена, следует проверить, обладает ли данная модель упругой системы потенциалом, допускающим вариационную формулировку рассматриваемой задачи.  [c.234]

В механике сплошной среды ранее других стали развиваться вариационные методы в теории упругости, в частности в задачах равновесия упругого тела, после того, как В, Ритц опубликовал в 1908 г. свой метод приближенного решения вариационной задачи. Пожалуй, только с середины прошлого века стали разрабатываться вариационные методы в гидромеханике. Весьма интересна вариационная формулировка уравнения баланса и использование ее в задачах термодинамики и задачах переноса, в том числе в задачах  [c.439]

Особенно удобна для расчетных целей формулировка Ю. Н. Работнова. Если при расчете детали на ползучесть необходимо определить напряжения и деформации для заданного значения времени, то следует рассчитать на прочность и жесткость эту деталь, используя изохронную кривую ползучести для данной величины времени. Поэтому так же, как и в случае установившейся ползучести, все известные методы расчетов за пределами упругости, как, например, метод упругих решений [24], метод переменных параметров упругости [6], вариационные методы [30], могут быть использованы и для расчетов по гипотезе старения.  [c.256]

Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

В книге представлены два общих подхода к процедуре формулировки уравнений для элемента. Описываемые в гл. 5 прямые методы привлекают своей простотой и рациональностью. Процесс построения элементов на базе прямых методов позволяет в значительной степени выяснить суть условий, которые удовлетворяются при формулировке элементов и которые при этом не удовлетворяются. Вариационные методы (гл. 6) — наиболее популярный в настоящее время способ построения элементов. Эти методы при определенных условиях обусловливают сходимость численного решения, причем некоторые формулировки обеспечивают при заданной точности достижение верхней и нижней границ решения. В гл. 6 для построения элементов используются вариационные методы, а в гл. 7 те же идеи используются при построении уравнений для всей конструкции. Таким образом, здесь излагается иной, более широкий взгляд на анализ конструкции по сравнению с приведенным в гл. 3.  [c.8]

В гл. 3 мы построили семейство приближенных методов решения задач с граничными условиями они сводятся к нахождению стационарной точки некоторого функционала, которая является также и точкой экстремума. В этой главе мы по возможности обобщим такие методы на задачи с начальными данными. Однако при рассмотрении вариационной формулировки эволюционных задач возникают дополнительные трудности. Например, в случае диссипативных систем после дополнения основной задачи сопряженной соответствующий им функционал 1 и,и ) уже не будет обладать такими экстремальными свойствами. Даже в таких эволюционных задачах, для которых существует точная вариационная постановка, как, например, динамические системы Гамильтона, стационарная точка не является экстремальной.  [c.156]

В вариационном методе конечных элементов вместо определяющего уравнения используется Эквивалентная вариационная формулировка. Для рассматриваемой задачи можно показать, пользуясь вариационным исчислением что решение у уравнения (1,35) совпадает с функцией, минимизирующей функционал  [c.25]

Метод конечных элементов основан на определении температурного поля путем приближенного решения соответствующей вариационной задачи. Для формулировки этой задачи напомним понятие функционала. Оператор I [f (л )] называется функционалом, заданным на некотором множестве функций, если каждой функции / х) из этого множества по некоторому правилу ставится в соответствие числовое значение / [/ (х)]. Иными словами, функционал является как бы функцией от функции . В практических приложениях обычно встречаются функционалы, заданные в виде некоторых интегралов, в подынтегральные выражения которых входят функции / (х).  [c.129]

Большой интерес к вариационным формулировкам задач деформирования многослойных оболочечных конструкций объясняется в первую очередь тем, что на основе исходных гипотез, применяя формальные математические приемы, можно избежать трудоемкого этапа составления уравнений равновесия статическим методом и приближенно свести трехмерную задачу теории упругости к одномерной или двумерной задаче. При этом соответствующие разрешающие уравнения и граничные условия строго соответствуют исходным допущениям и определяются единственным образом. Кроме того, вариационные формулировки являются основой для эффективных приближенных методов расчета, которые позволяют получить на выбранном классе аппроксимирующих функций наилучшие в энергетическом смысле приближенные решения.  [c.71]


Методами взвешенных невязок удается решать и нелинейные задачи нестационарной теплопроводности, но при этом для определения Вп (t) в (4.48) получается система нелинейных обыкновенных дифференциальных уравнений, которую в общем случае приходится интегрировать численно. Таким образом, температурное поле в теле в фиксированный момент времени описывается аналитической зависимостью, но переход от одного момента времени к другому связан с определением значений (t) численным интегрированием. Переход к конечным интервалам времени позволяет использовать вариационную формулировку нелинейных задач [13], представляя анализ процесса нестационарной теплопроводности как последовательность решений ряда задач стационарной теплопроводности.  [c.166]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

Целью настоящей статьи является анализ проблемы теплоотдачи при вынужденном движении (проблемы Грэтца) с учетом вязкой диссипации и внутреннего тенловыделения с помощью вариационного метода. Вариационные методы и раньше использовались для решения ряда задач теплообмена [3,]. Пользуясь математической терминологией, можно сказать, что основное дифференциальное уравнение чаще всего является самосопряженным. Вариационные формулировки обычно могут быть построены по образцу принципа Гамильтона, который приводит к уравнениям Эйлера — Лагран-н<а. Можно использовать также хорошо известные методы Рэлея —  [c.325]

Эта задача (без учета внутреннего тепловыделения и вязкой диссипации) была рассмотрена Грэтцем и рядом других авторов [1, 2 . Решение находим в виде ряда по собственным функциям задачи. Несколько первых собственных значений и соответствуго-ш их собственных функций были вычислены с достаточно высокой степенью точности. Если температуру находим в виде разложения по соответствующим ортогональным функциям, то точное решение может быть получено также и с помощью приведенного здесь вариационного метода аналогично тому, как это было сделано в предыдущем разделе. Однако здесь мы получим только приближенное решение, основанное на вариационной формулировке задачи. Из уравнения (6) получаем выражение для функционала / (0), которое в безразмерной форме имеет вид  [c.332]

Формулировку вариационных принципов этой теории, так же как и теории упругости для сплошного тела (см. гл. 3, 6), можно обобщить, рассматривая в качестве варьируемых переменных разрывные поля перемещений, деформаций, усилий и функций напряжений. Вариационные принципы при разрывных полях параметров напряженно-деформированного состояния могут служить для построения алгоритмов расчета оболочек, в частности при использовании метода Ритца и метода конечных элементов, а также для решения некоторых контактных задач.  [c.132]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

Заманчивне возможности упрощенных формулировок и решений с давних пор побуждали исследователей, работающих в области механики конструкций, попытаться описать особенности трехмерного поведения пластин в рамках двумерной классической теории. Все более широкое использование слоистых композитов в авиационных конструкциях за последнее десятилетие стимулировало практический интерес к теориям пластин, в которых учитываются деформации поперечного сдвига, межслойные напряжения и влияние толщины. Ниже будет сделано несколько коротких замечаний о современных вариационных формулировках в этих задачах, чтобы проиллюстрировать мощь вариационных методов, открывающих новые пути построения теорий, которые учитывали бы указанные факторы.  [c.416]

Вариационным формулировкам в современных расчетах отводится важная роль, поскольку они позволяют получать разрешающие уравнения, строго соответствующие исходным гипотезам, и служат основой для прямых методов решения задач. В расчетах многослойных конструкций со сложными моделями деформирования графическое представление о равновесном состоянии теряет свою наглядность и простоту, в то время как методы решений, основанные на вариационных постановках проявляют свои преимущества наиболее показательным образом и, пожалуй, становятся единствеиио пригодными.  [c.5]

Соответствующие возможности существенно расширились в последнее десятиле гие благодаря развитию методов решения неклассических вариационных задач (принцип макси-. мума Л. С. Понтрягина, математическое программирование и др.). При этом обнаружилось, в частности, что обе формулировки (статическая и кинематическая) имеют между собой чисто математическую связь и могут быть получены одна из другой путем формальных преобразований, т. е. без интерпретации теорем в терминах механики [70, 71, 104, 109 и др.].  [c.9]

Вариационная формулировка вместе с присущими ей более слабыми требованиями непрерывности естественно переносится на приближенные методы решения, называемые обычно прямыми методами (Курант и Гильберт, 1951, стр. 154 Нечас, 1967). Применение этих методов сводит задачу к нахождению стационарных точек функции конечного числа вещественных переменных.  [c.49]

Расчленение оператора позволяет придать исходной задаче различные эквивалентные формулировки, которые могут оказаться удобными для тех или иных целей. В частности, для решения задачи (9.4) могут оказаться эффективными вариационные методы и метод Бубнова — Галеркина [31], на основе мето-  [c.213]

Основная идея состоит во введении соответствующего пространства множителей и последующем применении метода Удзавы для решения уравнений седловой точки (см. теорему 7.2.2) функции Лагранжа, соответствующей рассматриваемой вариационной формулировке. Сходимость метода Удзавы устанавливается в теореме 7.2.5.  [c.371]


Получение решения методом конечных элементов связано с приближенной шаишзацией функционала, который определяется как интеграл от неизвестных величин в узловых точках во всей области. Вариационная формулировка задачи (I) - (4) связана с рассмотрением функционала  [c.134]

Метод Ритца решения задач о равновесии упругого тела основан на использовании вариационного принципа (9.8) или, в более общей формулировке, непосредственно уравнения (9.4). Этот метод состоит в следующем. Ищем решение для перемещений в виде конечной или бесконечной суммы  [c.392]

Введение понятия об областях изохрон оказалось полезным для решения задач о предельном быстродействии. Эти результаты были подытожены в монографии А. Я. Лернера Принципы построения быстродействующих следящих систем и регуляторов . Дальнейшее развитие теории состояло в формулировке общей вариационной задачи нахождения оптимальной фазовой траектории в и-мерном фазовом пространстве для любых начальных условий, а также в формулировке и доказательстве теоремы о га-интервалах, на базе которой оказалось возможным построить метод синтеза алгоритма оптимальных управляющих устройств.  [c.250]

Сформулированная выше вариационная задача не поддается решению регулярными методами. Однако линейность максимизируемого функционала (3) и всех уравнений и неравенств, входящих в систему ограничений, позволяет при некотором изменении формулировки задачи попытаться применить к ней методы линейного программирования [3, 10]. Изменение постановки задачи связано, прежде всего, с тем, что решение задачи линейного программирования не может быть получено в виде функциональной зависимости х = х (ф) оно дает только значения искомой функции в дискретном ряде точек. В данном случае такое видоизменение задачи несущественно, потому что профиль кулачка привода клапана быстроходного двигателя внутреннего сгорания всегда изготовляется на основе дискретного ряда значений подъема толкателя, сведенных в таблицу на чертеже кулачка.  [c.164]

ФОКА МЕТОД ФУНКЦИОНАЛОВ —особый способ формулировки ур-ннй квантовой теории поля и квантовой теории многих частиц, основанный на введении спец. функционального аргумента, носящего вспомогат, характер и по вьшолнении всех выкладок устремляемого к нулю. Соответствующие ур-ния имеют вид ур-ний в вариационных производных, и их явное решение может быть представлено в виде функционального интеграла. Совр. методы квантовой теории поля и квантовой теории ми. частиц представляют собой прямое развитие Ф. м. ф.  [c.330]

Любой из приведенных в гл.1.4 функционалов может быть использован для построения конечно-элементных соотношений, т.е. для решения задач механики деформируемого тела с помощью метода конечных элементов. Используя принцип возможных перемещений (1.4.14), придем к построению МКЭ в варианте метода перемещений. Принцип возможных напряжений (1.4.50) приведет к МКЭ в варианте метода сил. При использовании смешанных вариационных принцицов (1.4.58), (1.4.61) получим смешанные формулировки МКЭ. Модифицированный принцип возможных перемещений (1.4.62), допускающий независимую аппроксимацию компонентов перемещений на границе и по объему каждого из конечных элементов, приводит к так назы,-ваемым гибридным формулировкам МКЭ.  [c.63]


Смотреть страницы где упоминается термин Формулировка вариационного метода решения : [c.129]    [c.326]    [c.11]    [c.468]    [c.323]    [c.271]    [c.9]    [c.209]    [c.179]   
Смотреть главы в:

Статистическая механика Курс лекций  -> Формулировка вариационного метода решения



ПОИСК



Вариационное решение

Вариационные формулировки

Метод вариационный

Решения метод

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте