Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы прямые решения вариационной задачи

Методы прямые решения вариационной задачи 449  [c.614]

Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]


Численные методы построения оптимальных решений. Как уже отмечалось, в подавляющем большинстве случаев исследование проблемы оптимизации приводит к необходимости решения сложных вариационных задач, что невозможно без использования эффективных численных методов. В связи с этим в задачах механики полета находят широкое приложение существующие численные методы и, с другой стороны, при решении специфичных задач разрабатываются новые численные методы. Методы численного решения вариационных задач разделяются на прямые и непрямые. Основу первых составляют различные итерационное процессы последовательного уменьшения (увеличения) функционала для применения непрямых методов вариационная проблема предварительно сводится к краевой задаче для системы дифференциальных уравнений. Ограничимся перечислением тех методов, которые наиболее часто используются в задачах механики полета  [c.285]

Задача Б представлена в форме общих задач вариационного исчисления. В зависимости от вида функционала Яо и компонентов вектор-функционала Н задачи вариационного исчисления имеют различные формы и различные методы их решения [60]. Выбор той или иной формы задачи во всех случаях обусловлен удобством и эффективностью решения. Методы решения вариационных задач делятся на две большие группы аналитические и прямые (численные).  [c.76]

Обычно дифференциальные уравнения вариационных задач интегрируются в конечном виде лишь р исключительных случаях. Поэтому возникает необходимость решения вариационных задач непосредственными или прямыми методами, т. е. без решения соответствующих дифференциальных уравнений.  [c.97]

ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ ВАРИАЦИОННОЙ ЗАДАЧИ КРУЧЕНИЯ  [c.177]

Рассмотрим примеры решения вариационной задачи кручения прямыми методами.  [c.179]

Понятие о прямых методах решения вариационной задачи. Решение вариационной задачи о минимуме функционала может быть выполнено не только классическим путем, описанным выше, согласно которому она сводится к краевой задаче для некоторого дифференциального уравнения или системы дифференциальных уравнений, но и так называемым прямым методом. Последний состоит в представлении искомой функции (экстремали), минимизирующей функционал, в виде ряда  [c.449]

В отличие от задачи на экстремум функций конечного числа переменных в вариационной задаче необходимо исследовать на экстремум функции бесконечного числа переменных. Поэтому вполне естественной является основная идея прямых методов рассматривать вариационные задачи как предельные для задач на экстремум функций конечного числа переменных. Если при решении вариационных задач не совершать предельного перехода, то получим их приближенное решение.  [c.116]


Оба описанных способа основываются на дифференциальных уравнениях теории упругости, но ими не исчерпываются возможные подходы к решению задач. Еще одна возможность заключена в использовании минимальных энергетических принципов и в применении основанных на них прямых методов решения вариационных задач.  [c.126]

Итак, приближенное решение вариационных задач статистической динамики по методу множителей Лагранжа для простейших нелинейных систем обеспечивает высокий уровень точности уже при учете моментных соотношений второго порядка. В отличие от метода редукции уравнения относительно моментных функций здесь удовлетворяются не приближенно, а в строгом соответствии с совместной плотностью вероятности фазовых переменных. При этом форма распределения выбирается не произвольно, а на основе вариационного принципа максимума энтропии. Однако построение дальнейших приближений, которые могут потребоваться для системы с существенными нелинейностями, связано с громоздкими вычислениями. Привлечение моментных соотношений более высокого порядка приводит к усложнению выражения для р и резкому увеличению машинного времени на реализацию численного алгоритма. В связи с этим ниже рассмотрены другие варианты прямого метода решения вариационных задач, более удобные для практической реализации.  [c.61]

Эффективность прямых методов решения вариационных задач во многом зависит от обоснованного выбора выражений, аппроксимирующих искомые функции. В задачах статистической динамики возможно косвенное представление распределений, осно-  [c.66]

В методиках приближенного решения математически правильно поставленных задач сплошной среды особый интерес представляют так называемые прямые методы, связанные с вариационными задачами.  [c.438]

Различные приближенные аналитические методы связаны с вариационными формулировками и основываются на том, что существует тесная связь между вариационными проблемами и соответствующими краевыми задачами, выражаемая дифференциальными уравнениями Эйлера — Лагранжа. Эта взаимосвязь имеет большое значение для теории (см. гл. 4). Для краевой задачи всегда можно сформулировать соответствующую вариационную задачу и искать затем ее решение. При этом были развиты численные методы, чтобы решать вариационную задачу, не применяя дифференциальных уравнений Эйлера — Лагранжа, а посредством так называемых прямых методов вариационного исчисления.  [c.129]

Однако получение разложения (2.14) является сложным, так как для этого требуется решение вариационной задачи, приводящее к системе интегральных уравнений, которая выражает равенство интегралов исходной и аппроксимирующей функций по некоторым семействам прямых, пересекающих область. Интегральные уравнения преобразуются в систему фор-мул, пригодных для определения искомых функций одной переменной методом последовательных приближений. В частных случаях, однако, подбор функции может оказаться практически целесообразным.  [c.137]

Расчет массивных тел методами математической теории упругости связан со значительными математическими трудностями ввиду разнообразия форм, краевых условий и условий нагружения. Поэтому для решения пространственных задач применяют прямые и вариационные методы прикладной теории упругости.  [c.351]

Таким образом, вместо решения уравнения Пуассона (7.33) при граничном условии (7.13) функция напряжений Ф, минимизирующая функционал может быть приближенно определена одним из прямых методов вариационной задачи кручения при выполнении граничного условия (7.13).  [c.179]

В настоящей работе решен цикл новых задач выбора динамически оптимальных законов движения механизмов по различным критериям в вариационной постановке [11—19]. При решении этих задач использованы как методы, связанные с интегрированием уравнения Эйлера для функционала, соответствующего выбранному критерию оптимального движения, так и прямые вариационные методы.  [c.5]


Метод решения. Искомая динамически оптимальная функция находится в результате решения вариационной изо-периметрической (в силу соотношений (1.6) и (1.7)) задачи. В настоящей работе для решения этих задач используются как методы, связанные с интегрированием уравнения Эйлера для заданного функционала, так и прямые вариационные методы.  [c.19]

Следуя классификации, данной в работе [120], к методам решения нелинейных задач отнесем следуюш,ие аналитические и численные методы аналитические — вариационные, интегральные, методы взвешенных вычетов, метод итераций, методы сведения исследуемого уравнения к другим типам уравнений (в том числе метод подстановок, метод подобия и другие), численные — метод конечных разностей и метод прямых.  [c.66]

В математической физике методы приближенного решения дифференциальных и интегральных уравнений, основанные на сведении задач к решению системы алгебраических уравнений, принято называть прямыми методами. Прямые методы широко применяют непосредственно для построения приближенных решений задач, описываемых обыкновенными дифференциальными уравнениями и уравнениями в частных производных, а также вариационных задач, к которым сводятся соответствующие задачи математической физики.  [c.115]

Оба метода при использовании вариационного принципа и соответ-ствуюш,их разностных схем могут быть сведены к одним и тем же уравнениям [9] и одинаково пригодны для решения задач подобного типа. С точки зрения практической реализации на ЭВМ МКЭ целесообразно использовать для задач с контуром сложного очертания, для которых необходима сильно нерегулярная структура сетки получающуюся при этом систему линейных алгебраических уравнений практически можно решать только одним из прямых методов. Метод конечных разностей для подобных задач требует сгущения сетки, однако структура уравнений в этом методе упрощается, и даже частичное использование регулярной сетки позволяет сильно уменьшить количество различных коэффициентов уравнений систему уравнений при этом можно решать как прямым, так и итерационным методом.  [c.103]

Осесимметричное нагружение дисков рассмотрим как наиболее типичное при оценке статической прочности. В качестве расчетного метода использован метод конечных элементов (МКЭ). Это не единственный возможный метод расчета известно применение и других методов дискретизации пространственной задачи к расчету дисков (метод конечных разностей, вариационно-разностный [2, 43, 100]). МКЭ наиболее широко применяют в прикладных задачах 47]. Можно отметить простоту формулировок основных принципов, ясность физической интерпретации, свободу размещения узловых точек, симметрию матриц жесткости элементов и системы уравнений, облегчающую контроль расчетов. При выборе в качестве неизвестных узловых перемещений матрица разрешающей системы будет симметричной, положительно определенной (при исключении перемещения диска как жесткого целого) и иметь ленточную структуру. Это способствует быстрому решению системы разрешающих уравнений прямыми или итерационными методами. Методу конечных элементов посвящено большое число работ [3, 46, 53, 114, 119]. Приведенные в гл, 4 результаты получены ДЛЯ простейшего кольцевого элемента треугольного сечения, однако основные соображения, использованные в решении, имеют достаточно общий характер и применимы как для плоской задачи, так и при более сложных элементах в осесимметричном случае.  [c.153]

Среди прямых методов решения вариационных задач наиболее широкое применение получили методы Рэлея—Ритца, Бубнова— Галеркина.  [c.127]

Среди прямых методов решения вариационных задач наиболее широкое применение получили метод Ритца, метод Канторовича н метод Бубнова—Галеркина — метод приближенного решения диффе-  [c.97]

Обычно для оценки точности приближенного решения, полученного методом Ритца или другими прямыми методами, пользуются следующим теоретически, конечно, несовершенным, но практически достаточно надежным приемом вычислив Ыг и ы,-(т1+1)> сравнивают их между собой в нескольких точках рассматриваемой области. Если в пределах требуемой точности их значения совпадают, то считают, что с требуемой точностью решением вариационной задачи будет гп. Если же значения ы,- vi.Unn+D в пределах заданной точности не совпадают, то вычисляют Ыкп+2) и сравнивают о (n+D-  [c.109]

Прямой метод решения вариационных задач, предложенный Л. В. Канторовичем (1933) и названный методом приведения к обыкновенным дифференциальным уравнениям, представляет собой развитие метода Ритца, когда функционал зависит от функций нескольких переменных.  [c.111]

Таким образом, прямой вариационный метод В.Ритца фактически сводит решение вариационной задачи к задаче о поиске экстремума функции. В приложениях этот метод часто оказьшается весьма эффективным.  [c.283]

Применительно к задачам оптимального профилирования сопел для воздушно-космических систем (ВКС) интересны не только плоские симметричные, но и плоские несимметричные сопла, которые кроме тяги создают подъемную силу и момент. В ЛАБОРАТОРИИ решение вариационных задач, включающих эти характеристики или их комбинации в качестве оптимизируемого или фиксируемого функционала ( изопериметрического условия ), с помощью МНК выполнила Г.Ю. Миско [42]. Прямыми методами вариационного исчисления оптимальное профилирование несимметричных сопел ВКС успешно осуществили М. К. Аукин и Р. К. Тагиров [43, 44]. Прямые методы позволили учесть трение и вытесняющий эффект пограничного слоя (последний для сопел ВКС увеличивает тягу) и осуществить оптимальный выбор наклона короткой (нижней) стенки несимметричного сопла.  [c.367]


Различные способы построения минимизирующих последовательностей относятся к прямым. методам решения вариационных задач. Основная идея этих методов состоит в том, что вариационную задачу рассматривают как предельную для некоторых задач на экстремум функций конечного числа переменных. К прямым методам решения вариационных задач относится, например, метод Ритца.  [c.32]

Одним из прямых методов решения вариационных задач является метод Ритца. Рассмотрим метод Ритца применительно к нахождению минимума функционала П (5.38)  [c.107]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Вариационная задача отыскания функции А = Д/(ф), при которой достигается минимум функционала и в прямом приближенном методе Ритца, сводится к задаче отыскания коэффициентов С в приближенном решении, представленном в фо ме конечной суммы  [c.422]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]


Смотреть страницы где упоминается термин Методы прямые решения вариационной задачи : [c.64]    [c.281]    [c.439]    [c.449]    [c.96]    [c.2]    [c.127]    [c.21]    [c.81]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.449 ]



ПОИСК



Вариационное решение

Вариационной задачи решение прямое

Задача вариационная (задача

Задача и метод

Задача прямая

Задачи и методы их решения

Замечания о применении вариационных принципов механики Прямые методы решения задач динамики. Принцип переменного действия

Метод вариационный

Метод прямых

Методы прямые решения вариационной

Понятие о приближенных прямых методах простейшего решения некоторых вариационных задач. Способы Эйлера и Ритца. Примеры

Прямые методы решения вариационной задачи кручения

Прямые методы решения вариационных стохастических задач

Решения метод

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте