Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод решения с использованием давлений и скоростей

Осесимметричные каналы являются составной частью конструкций многих машин, аппаратов, сооружений. Прямой гидродинамической задачей является определение скоростей и давлений потенциального потока в канале, форма которого задана. Эта задача в общем случае может быть решена только приближенно с использованием численных или графоаналитических методов. Обратная задача, которую мы рассмотрим в этом параграфе, состоит в определении формы поверхности канала и некоторых гидродинамических параметров по заданному распределению вдоль оси одного из них. Такая задача представляет практический интерес, так как позволяет найти форму канала, которая обеспечивает формирование потока с заданными гидродинамическими параметрами. Ниже изложен общий метод решения задачи о построении формы канала по заданному закону изменения скорости на его оси [91.  [c.304]


Для определения полей скорости и давления при С. т. около тел вращения и профилей немалой толщины, внутри сопел ракетных двигателей и сопел аэродинамич. труб и в др, случаях С. т. пользуются численным методом характеристик и др. численными методами решения ур-ний газовой динамики. При использовании быстродействующих вычислит, машин становится возможным расчёт трёхмерных С. т., напр. расчёт обтекания тел вращения под углом атаки, сопел не-круглого сечения и др.  [c.430]

Разработан новый аналитический метод расчета обтекания тел вращения и плоских контуров потоком идеального газа с большой сверхзвуковой скоростью. Метод основан на представлении решения уравнений газовой динамики в виде рядов по степеням (7 — 1)/(7-Ь1), где 7 — отношение теплоемкостей. Получены в общей форме выражения первых двух членов этих рядов для основных газодинамических величин составляющих скорости, давления и плотности. Точность приближенных решений, основанных на сохранении первых двух членов рядов, оценена путем их сравнения с точными решениями для обтекания клина и конуса. Установлено, что для 7 = 1.4 метод может быть использован при значениях параметра подобия К = = М 8Ш(Т > 3-4.  [c.51]

Представим краткое описание модифицированного метода. В расчете используются сетки, построенные в физической плоскости. Для каждой ячейки записывается система интегральных законов сохранения (из которой следует приведенная выше система исходных уравнений в дивергентной форме). Используется полностью неявная схема. Это означает, что для аппроксимации конвективных потоков и вязких напряжений на гранях ячейки используются параметры с нового временного слоя. Затем система законов сохранения для каждой ячейки записывается через приращения по времени основных переменных. В данной версии программы в качестве таких переменных используются плотность, компоненты скорости, давление и турбулентная вязкость. Для построения неявной схемы при использовании задачи Римана о распаде произвольного разрыва предполагается, что система разрывов, реализовавшаяся после распада на новом временном слое, идентична системе разрывов на старом временном слое. В случае интенсивных разрывов на старом временном слое производится итерационное уточнение решения.  [c.392]

В [Л. 18] предложен приближенный метод расчета коэффициентов трения и теплообмена при плоскопараллельном турбулентном пограничном слое в сжимаемой жидкости с продольными градиентами скорости и температуры. Метод основывается на решении интегральных уравнений движения и тепловой энергии, допущении о возможности представления коэффициентов трения и теплообмена степенными функциями продольной координаты, а также на использовании опытных данных о влиянии на трение и теплообмен различных факторов, усложняющих перенос количества движения и тепла в пограничном слое. К числу таких факторов при обтекании газом тел с непроницаемой поверхностью относятся продольный градиент давления, сжимаемость газа и неизотермические условия движения.  [c.492]


Входящее в (4.124) распределение р( ) заранее неизвестно и должно быть опре делено в результате решения задачи. Наличие индуцированного градиента давления придает параболической системе уравнений пограничного слоя новые свойства, связанные передачей возмущений вверх по потоку и с появлением соответствующей неединственности решения, описанной в работе [Нейланд В. Я., 1970] и выше в этой главе. Дополнительное краевой условие, задаваемое, например, на донном срезе р = 1) = В, позволяет получить единственное решение краевой задачи (4.124). Для численного решения краевых задач такого типа использован метод, опубликованный в работе [Дудин Г.Н., Лыжин Д.О., 1983]. Процедура решения заключается в задании некоторого поля скоростей и давления в области (0 1 0 Л сх)). В дальнейшем линеаризованная краевая задача (4.124) решается при известных градиенте давления, распределении давления и толщине вытеснения <5 ( ), в результате определяется новое распределение толщины вытеснения <5( ), которое не совпадает с исходным <5 ( ). Следующий этап вычислений связан с нахождением поправки А (С) к распределению толщины вытеснения. Для этого используется линейное дифференциальное уравнений второго порядка, в котором неоднородный член пропорционален разности ( ) — 5 ). Процедура вычислений повторяется при новом распределении толщины вытеснения 5+1 (е) = ( ) + Д( ) И соответствующих распределениях давления и градиента давления до тех пор, пока разность <5 ( ) — <5( ) не станет достаточно малой. Таким образом можно рассчитывать также течение и в пограничном слое с возвратными токами, используя ориентированные разности при аппроксимации конвективных производных.  [c.184]

Необходимо отметить, что большое число задач внедрения в жидкость решено аналитически. Вместе с тем область применимости этих решений является достаточно узкой, в связи с тем что при их получении сделано значительное число упрощающих предположений, которые могут быть и не оправданными. Например, значительная часть решений получена для несжимаемой жидкости. Оболочка считалась тонкостенной, материал ее вел себя упруго. Между тем хорошо известно, что при высоких скоростях проникания контактирующие среды ведут себя существенно неупругим образом, важное значение имеет при этом их сжимаемость. Характерными особенностями процесса являются появление значительных пластических деформаций, сильное формоизменение свободных и контактных поверхностей, зарождение и развитие в жидкости зон кавитации. В последние годы использование численных методов при исследовании внедрения тонкостенных оболочек позволило отказаться от ряда упрощений и получить существенно новые результаты [17]. Однако на основе модели тонкостенной оболочки не могут быть изучены достаточно точно такие явления, как распространение интенсивных волн напряжений в материале оболочки, их взаимодействие с волнами давления в жидкости, динамическое разрушение оболочки, что предопределяет ограниченные возможности данного подхода.  [c.208]

Вернемся теперь к поставленной нами примерной задаче (рис. 56). В настоящее время разработаны методы расчетов потенциального потока в решетках лопаточных профилей, при использовании которых получается интегральное решение основных уравнений процесса течения. Можно решить так называемую прямую задачу, т. е. при заданной решетке найти поле скоростей потенциального обтекания решетки потоком, оценив затем потери течения при различных режимах обтекания. Решается и обратная задача по заданному потоку рабочего агента построить решетку с рациональным распределением скоростей (давлений) по поверхности лопаточного профиля, обеспечивающим минимальные потери энергии.  [c.180]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]


Принятие этой зависимости аналогично принятию основной гипотезы Герца в теории удара, однако, как отмечает Н. А. Кильчевский, относительная погрешность, связанная с использованием равенства (2.2.86) для изображений, меньше, чем погрешность, которая возникает при введении соотношения (2.2.83) в пространстве оригиналов (равенства (2.2.86) и (2.2.82) не эквивалентны). Кильчевский оценил погрешность такого квазистатического решения, сравнивая его с точным решением задачи, основанным на использовании метода Сомилья-на интегрирования динамических уравнений упругости. В результате установлено, что погрешность не превышает 20%, следовательно, при вычислении давления и скорости можно ограничиться квазистатиче-ским решением.  [c.133]

Как уже указывалось, данный метод применим лишь в случае, если отношение скоростей / является монотонной функцией-/]. ПриВ>0, 5 >0 (нагретая стенка, отрицательный градиент давления) отношения скоростей в отдельных частных решениях могут быть как больше единицы, так и принимать отрицательные значения. В обоих случаях метод неприменим. Интегрирование было проведено д-ром Л. Альбером (лаборатория Льюиса NA A) с использованием метода последовательных приближений.  [c.239]

Гидродинамическое направление аналитически изучает поведение простых периодических волн на поверхности жидкости, лишенной трения. Это самый старый и разработанный раздел учения о волнообразовании. Наиболее просто причины возникновения В0.ПН могут быть объяснены при рассмотрении течения двух невязких жидкостей различной плотности, движущихся с заданными скоростями (метод Кельвина—Гельмгольца). Это теоретическое решение позволяет показать, что поток газа, движущийся вдоль волновой поверхности раздела фаз, приводит к возникновению разрежения над гребнями волн и повышению давления во впадинах, т. е. способствует развитию волнообразования. Следующая степень приближения, предложенная Майлзом [198], состоит в том, что для невязких сред учитывается существование профиля скоростей вблизи поверхности раздела фаз. Несмотря на идеализацию процесса волнообразования, это направление позволяет установить основные качественные соотношения между различными параметрами волновой системы, а поэтому продолжает успешно развиваться. Вместе с тем при использовании соотношений, справедливых для жидкости, лишенной трения, необходимо учитывать, что наличие сил вязкости в слое, близком к границе раздела, приводит к возникновению ряда дополнительных эффектов, которые не могут быть учтены в рамках метода Кельвина—Гельмгольца—Майлза. Например, в вязких средах возможно появление отрывного течения с повышением давления с наветренной стороны пучности волны и понижением с подветренной стороны [58, 78]. Отдельные вопросы волнообразования в вязких средах были проанализированы Брук-Бенджемином [160]. Однако в целом теория такого течения практически не разработана.  [c.182]

Хесс и Смит [3] впервые применили этот метод к крупномасштабным практическим задачам. На рис. 5.8 показано типичное соотношение между аналитическими результатами и полученными МГЭ (с использованием плоских четырехугольных элементов при постоянных значениях интенсивностей источников ф на каждом из них) для скоростей в точках поверхности эллипсоида. Число уравнений было уменьшено путем учета квадрантной симметрии (а именно коэффициенты для элементов с одинаковыми значениями ф заранее суммировались). Численные результаты, как видно, превосходно согласуются с точным решением. Проводилось также сравнение вычисленных и экспериментальных распределений давления на двух дельтаобразных крыльях. Пример подобного сравнения приведен на рис. 5.9 и убедительно показывает пригодность МГЭ для анализа реальных задач полета на малой скорости.  [c.155]

В предшествующем параграфе был рассмотрен самый простой метод использования интегральных соотношений для ламинарного пограничного слоя, но расчёты оказались вполне удовлетворительными лишь для тех случаев, в которых продольный перепад давления оказывался либо отрицательным, либо был небольшим положительным. Для больших положительных перепадов давления в пограничном слое он мало пригоден. Кроме того, этот метод требовал графического или численного интегрирования нелинейного уравнения (4.17) для каждого распределения скорости внешнего потока вдоль пограничного слоя. Эти два обстоятельства и побуждали многих исследователей искать другие приближённые методы решения уравнений для пограничного слоя. Большая группа этих методов, получивших наибольшее применение к решению отдельных задач, основывается на специальном выборе независимых безразмерных переменных, позволяющем дифференциальные уравнения с частными производными (1.13) сводить либо к одному нелинейному обыкновенному дифференциальному уравнению с числовыми коэффициентами, либо к некоторой последовательности обыкновенных дифференциальных уравнений также с числовыми коэффициентами. В этих методах численно решается обыкновенное уравнение или группа, уравнений и составляются соответственные таблицы. Эти таблицы затем могут быть использованы для целой группы соответственных задач (а не одной какой-либо задачи).  [c.272]

Авторами был предложен метод определения эквивалентной вязкости /1экв модельной вязкой жидкости с использованием модели бингамовской среды [17]. Этот метод дает процедуру определения /Хэкв (см. 6.1). Коэффициент эквивалентной вязкости учитывает все параметры течения, включая и геометрию, что позволяет определять многие параметры процесса, например, поля скоростей и давлений, расходы, потребляемые мощности, границы ядра. Это дает возможность строить модель третьего уровня даже в тех случаях, когда нет аналитического решения поставленной задачи.  [c.248]


Элементарные выкладки показывают, что, как и следовало ожидать, решения такой задачи не существует. Численные расчеты для всей области 22 проводились с метода модифицированного метода интегральных соотношений A.A. Дородницына с использованием ЭВМ. Здесь отметим, что при расчетах использовались две полосы, границы которых совпадали с внешней линией тока области 22 и с верхней ветвью линии тока ф22т> Учитывая физические особенности задачи, для нижней полосы вводи-1 0 s/ лась улучшенная аппроксимация профилей скорости и плотности. Для этого использовалась информация о распределении энтальпии торможения и энтропии по линиям тока. На рис. 3.13 приведено сравнение результатов расчета распределения давления в области присоединения  [c.92]

Другим важным для техники примером применения расчетов на ползучесть изогнутых и скрученных стержней является расчет турбинных диафрагм. Этот вопрос тоже разработан еще недостаточно. В работе В. И. Розенблюма [138] для решения его использован аппарат теории тонких стержней Кирхгоффа — Клебша. Диафрагма, представляющая собой полукольцевую пластину, опертую по внешнему контуру и нагруженную равномерным давлением, рассчитана как изогнутый и скрученный кривой стержень, поперечное сечение которого вытянутый прямоугольник. Решение, выполненное методом Ритца, позволило дать простую оценку максимальной скорости прогиба, но не дало возможность вычислить напряжения. Этот вопрос рассмотрен в работе П. Я. Богуславского [13]. Задача решена по теории старения в формулировке Ю. Н. Работнова. В решении использован метод последовательных приближений. Результаты расчета сопоставлены с данными опыта.  [c.231]

Напомним, что нелинейные члены уравнений Навье — Стокса (включая градиент давления, квадратично выражающийся через поле скорости) описывают силы инерционного взаимодействия между пространственными неоднородностями поля скорости. Если перейти в этих уравнениях к безразмерным переменным у = х/Ь, V = иЦ и т = vинерционного взаимодействия. Если Не мало, то силы инерционного взаимодействия будут создавать лишь малые возмущения основного потока , описываемого линейными уравнениями (получающимися из уравнений Навье — Стокса отбрасыванием нелинейных членов). В этом случае решение полных уравнений Навн е — Стокса с помощью рядов по степеням Не будет представлять собой применение обычного метода теории возмущений, и мы сможем использовать все ее общие результаты, включая и разработанные в квантовой теории поля (см., например, Швебер, Бете и Гофман (1955)) способы графического изображения слагаемых ряда по степеням константы взаимодействия в виде некоторых диаграмм . Если же Не велико, так что инерционные взаимодействия очень сильны, то непосредственное использование рядов по степеням константы взаимодействия будет, как н всегда в теории систем с сильными взанмодейетвиями, неэффективным, но формальные ряды по степеням Не все же будут полезными для целей, указанных выше.  [c.270]

Программа дисциплины Гидравлика (техническая механика жидкости и газа) предусматривает изучение численных методов и ик реализацию на ЭВМ применительно к решению уравнений Навье-Стокеа в конечно-разностной форме. Для учебных, а в ряде случаев и для научных целей наиболее целесообразно использование декартовой системы координат и физических неременных компонент скоростей и давления. В исследуемой области изменения независимых переменных вводятся сетка - дискретная совокупность узловых точек. Вместо функций непрерывного аргумента рассматриваются сеточные функции, значения которых задаются в узловых точках сетки Дифференциальные уравнения с соответствующими краевыми условиями заменяются приближенными сеточными уравнениями, связывающими значения искомых функций в узлах сетки При этом формируется система алгебраических уравнений, которую можно решать тем или иным способом на ЭВМ.  [c.92]

В работе [37] общие положения теории применены к расчету течения перед донным срезом тела и донной областью отрыва. Для решения задачи о локально невязком течении использован метод интегральных соотношений Дородницына [38]. Как показывает сравнение результатов расчета [37] с экспериментальными данными [39] (проведенное в работе [40]), уже для первого приближения распределение давления вдоль поверхности тела определяется достаточно точно (фиг. 9). В работе [40] также в рамках асимптотической теории рассмотрено течение перед донным срезом, но только при гиперзвуковой скорости внешнего невязкого потока. Взаимодействие гиперзвукового потока с пограничным слоем на основной части тела предполагается слабым (Мсх>т 1, где т — характерный наклон эффективной границы, образованной толщиной вытеснения пограничного слоя). В этом случае изменение давления на порядок величины происходит на длинах порядка МооТ, однако область с большими поперечными перепадами давления имеет характерную длину порядка т, как и при умеренных сверхзвуковых скоростях.  [c.250]

Хиклинг и Плессет [16] получили на быстродействующей ЭВМ решения для схлопывания газовой каверны в сжимаемой жидкости без учета вязкости и поверхностного натяжения. Они рассчитали движение стенки пузырька и распределения скорости и давления в окружающей жидкости, а также описали повторное образование каверны и возникающую при этом ударную волну, распространяющуюся в жидкости. Движение до момента достижения минимального радиуса было рассчитано методом Гилмора, основанным на гипотезе Кирквуда—Бете и решениях уравнений движения как в лагранжевых координатах, так и в виде характеристик. Начальными условиями последних двух точных решений служило движение стенки пузырька в дозвуковом диапазоне ( //С 0,1), рассчитанное методом Гилмора. Это позволяло значительно сократить время счета, которое требовалось бы при использовании точного метода расчета движения от его начала. После достижения минимального радиуса течение жидкости в области повторного возникновения пузырька до момента образования ударной волны рассчитывалось в лагранжевых координатах.  [c.154]

Изучение сверхзвуковых потоков разреженных газов представляет интерес как для решения практических задач, связанных с полетами тел на больших высотах, так и для решения принципиальных вопросов аэродинамики разреженных газов. Экспериментальных работ в области сверхзвуковых течений разреженных газов опубликовано мало. Это объясняется в большой степени методическими трудностями. Большинство методов, успешно применяемых для исследования течений плотных газов, или не применимо в случае течений разреженных газов, или их применение требует сложных усовершенствований. Так обстоит дело с интерферометрическим методом, шлиренметодом, методами спектрального поглощения, а также методами поглощения рентгеновских и электронных пучков [1]. Их применимость ограничивается давлениями 1— 10 мм рт. ст. Поэтому метод визуализации, использующий свойства послесвечения, представляется наиболее перспективным для исследований течений разреженных газов. В основе метода лежит зависимость интенсивности послесвечения от термодинамического состояния газа. Применение метода ограничивается давлением, при котором уже невозможно организовать разряд, вызывающий длительное послесвечение. В зависимости от условий эксперимента, предельное давление может быть доведено до 8—6- 10 мм рт. ст. В статье [1] дается обзор работ, посвященных исследованию свойств послесвечения в азоте и воздухе и их применению в газодинамических исследованиях. Преимущество азота и воздуха по сравнению с другими газами состоит в том, что в них легко вызывается послесвечение большой длительности (1 —10 сек). Медленное затухание свечения позволяет работать на стационарных аэродинамических установках и получать картины обтекания тел регистрацией на фотопластинку. В таких газах, как Не, Аг, Ые, Нг и др., послесвечение длится в среднем 10 —10 сек. При таком быстром затухании приходится работать в области малых интенсивностей света, а это вызывает необходимость фотоэлектронной регистрации. Малая продолжительность послесвечения накладывает ограничение на скорость исследуемых процессов — они должны протекать за 10— 10 сек. Процесс сжатия газа в ударной волне отвечает этому требованию. Что касается более медленных процессов, то они будут регистрироваться с искажениями, вызванными наложением процесса высвечивания на исследуемый процесс. Возможность использования послесвечений небольшой длительности позволяет выбрать наиболее простой тип возбуждающего разряда.  [c.138]


Во всех рассмотренных в работе [183] задачах реализован единый подход, который используется для многих задач математической физики. Сущность его заключается в следующем. Для каждой области существования звукового (электромагнитного) поля на основе выбора соответствующих частных региений уравнения Гельмгольца строится такая их совокупность, которую мы называем общим решением граничной задачи. Это не совсем традиционное для математической физики понятие означает, что каждый раз мы строим некоторую совокупность частных решений уравнения Гельмгольца, которая содержит достаточно произвола для того, чтобы удовлетворить произвольное граничное условие для скорости или давления на поверхности, ограничивающей область существования поля. Само доказательство такой возможности обычно основано на использовании свойств функций штурм-лиувиллевского типа [152]. В частности, одно из важнейших их свойств — свойство ортогональности позволяет в последующем свести задачу определения произвольных постоянных и функций в общем представлении характеристик поля к решению простых систем линейных алгебраических уравнений. Задача несколько усложняется, если на граничной поверхности, совпадающей с координатной поверхностью, заданы смешанные граничные условия В этом случае на одной части границы задана нормаль ная составляющая скорости, а на другой — давление. Такие граничные условия приводят к довольно сложным системам интегральных или алгебраических уравнений, для решения которых не предложены к настоящему времени методы, эффективные для произвольной длины волны.  [c.13]

Метод расчета. Примененный расчетный алгоритм основан на обобщенной процедуре глобальных итераций, предназначенной для решения конечно-объемным факторизованным методом уравнений переноса на многоблочных пересекающихся сетках О- и Н-типа. Система исходных уравнений записьшается в дельта-форме в криволинейных, согласованных с границами расчетной области координатах относительно приращений зависимых переменных, включающих декартовые составляющие скорости. После линеаризации система исходных уравнений решается с помощью согласованной неявной конечно-объемной процедуры коррекции давления [1], основанной на концепции расщепления по физическим процессам и записанной в -факторной формулировке. При этом для дискретизации временных производных используется схема второго порядка аппроксимации [10]. Для уменьшения влияния численной диффузии в расчетах течений с организованным отрывом потока, весьма чувствительных к ошибкам аппроксимации конвективных членов, в явной части уравнений переноса используется одномерный аналог противопоточной схемы с квадратичной интерполяцией [11]. Одновременно, чтобы избежать ложных осцилляций при воспроизводстве течений с тонкими сдвиговыми слоями, в неявной части уравнений использован механизм искусственной диффузии в сочетании с применением односторонних противопоточных схем для представления конвективных членов. В свою очередь, для устранения немонотонностей в распределении давления при дискретизации градиента давления по схеме с центральными разностями на согласованном (с совмещенными узлами для скалярных переменных и декартовых составляющих скорости) шаблоне в блок коррекции давления введен монотонизатор с эмпирическим сомножителем. Его величина 0.1 определена в ходе численных экспериментов на задаче обтекания цилиндра и шара потоком вязкой несжимаемой жидкости. Высокая эффективность вычислительной процедуры для решения дискретных алгебраических уравнений обеспечена применением метода неполной матричной факторизации. Более подробно детали описанной процедуры расчета течения на моноблочных сетках изложены в [11].  [c.46]


Смотреть страницы где упоминается термин Метод решения с использованием давлений и скоростей : [c.107]    [c.44]    [c.600]    [c.338]    [c.4]    [c.217]    [c.256]    [c.108]    [c.12]    [c.95]    [c.182]   
Смотреть главы в:

Метод конечных элементов в механике жидкости  -> Метод решения с использованием давлений и скоростей



ПОИСК



288 — Использование 168 — Методы

Решения метод

Скорость давление



© 2025 Mash-xxl.info Реклама на сайте