Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рентгеновские Поглощение

Атомную структуру аморфных сплавов можно экспериментально определить, используя дифракционные методы исследования. Рассеяние рентгеновских лучей, нейтронов и электронов на аморфном веществе позволяет установить общий структурный фактор многокомпонентной системы, который соответствует сумме парциальных структурных факторов. На основании парциальных функций атомного распределения определяют характер соседств различных атомов в сплаве. Для этого проводят съемку с использованием рентгеновского излучения различных длин волн или комбинированные исследования (нейтронов, рентгеновских лучей и электронов.) В последнее время для этих же целей используют метод, основанный на исследовании тонкой структуры спектров рентгеновского поглощения. Преимущество этого метода — возможность независимо находить функцию для каждого данного сорта атомов в системе, содержащей несколько компонентов. Обычная же рентгеновская дифракция, как отмечено выше, содержит усреднение по всем возможным парам атомов. Более подробно о методах рентгеноструктурного анализа аморфных сплавов — см. раздел 5.  [c.161]


Так как р / (Е), то из уравнения (3) следует, что контрастность тем больше, чем меньше будет энергия выбранного рентгеновского излучения. Это означает, что для хорошего рентгеновского поглощения следует выбирать возможно меньшее напряжение трубки и возможно большую силу тока.  [c.175]

Ркс. 5 2. Схема возникновения фотоэлектрона и характеристического излучения при поглощении фотона рентгеновского излучения  [c.115]

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.  [c.280]

Поглощение рентгеновского излучения  [c.404]

Рентген установил, что способность вещества поглощать рентгеновские лучи тем больше, чем больше его плотность, так что свинцовые пластинки ослабляют поток рентгеновского излучения гораздо сильнее, чем пластинки той же толщины, сделанные из алюминия. Существенно для поглощения наличие в поглощающем веществе атомов тяжелых элементов, независимо от того, в какие соединения они входят. Так, например, тонкий слой свинцовых белил или стекло со свинцовыми солями сильно поглощают рентгеновские лучи именно благодаря наличию в их составе тяжелых атомов свинца.  [c.405]

В тех же исследованиях Рентген установил и другой крайне важный факт, использованный им для характеристики применяемых в том или ином случае лучей. Было обнаружено, что поглощение рентгеновских лучей одним и тем же веществом различно в зависимости от условий их получения. Лучи, сильно поглощаемые, были названы мягкими, лучи, слабо поглощаемые, — жесткими. Таким образом, способность лучей проникать сквозь вещество характеризует степень их жесткости.  [c.405]

Как уже упоминалось выше, определение интенсивности рентгеновских лучей по количеству тепла, выделяемого ими при поглощении в металлах, являясь принципиально наиболее прямым способом, связано с большими практическими затруднениями. Интенсивность рентгеновских лучей может изме-р ться также и по наблюдению других действий рентгеновских лучей по интенсивности вызываемой ими флуоресценции, по скорости происходящей под их влиянием фотохимической реакции, в частности, по почернению фотографической пластинки, и по силе ионизационного тока, получаемого при их действии. Наиболее разработан ионизационный метод, при котором стараются добиться того, чтобы рентгеновские лучи полностью поглощались в ионизационной камере (толстый слой газа, применение тяжелого газа). Теперь в стандартных рентгеновских установках для структурного анализа обычно применяются счетчики Гейгера. >  [c.405]


Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. смесь лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера.  [c.406]

Таким образом, одна и та же трубка с накаливаемым катодом может служить для получения рентгеновских лучей любой жесткости, определяемой наложенным ускоряющим полем (управляемые трубки). В трубках этого типа жесткость быстро растет с увеличением разности потенциалов. Опыт показывает, что средний коэффициент поглощения р лучей такой трубки приблизительно обратно пропорционален кубу разности потенциалов между анодом и катодом V,  [c.406]

ДЛИНА ВОЛНЫ ОСНОВНЫХ ЛИНИЙ и КРАЕВ ПОГЛОЩЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Таблица 35.2 Длина волны диаграммных линий [3] при начальном уровне К  [c.961]

Коэффициент ослабления пропорционален приблизительно а также Z по мере уменьшения длины волны рентгеновского излучения падает и ц. Однако при некоторых значениях волны (Хкр) коэффициент ослабления резко возрастает (край полосы поглощения), а затем вновь убывает с уменьшением длины волны по тому же закону.  [c.966]

Рис. 45.37. Поглощение рентгеновского излучения межзвездным газом. Приведено число атомов водорода Л/н на луче зрения, при котором оптическая толщина равна единице для данного значения энергии фотона Е [52] Рис. 45.37. <a href="/info/477648">Поглощение рентгеновского излучения</a> межзвездным газом. Приведено число атомов водорода Л/н на луче зрения, при котором <a href="/info/147686">оптическая толщина</a> равна единице для данного значения энергии фотона Е [52]
Центр Галактики [64, 65]. Межзвездное поглощение в направлении на центр Галактики превышает 27 , поэтому наблюдать его можно только в радио-, инфракрасном или рентгеновском и -у-диапазонах. В центре Галактики расположены звездный сфероид массой около 10 ° Mq, а также вращающийся со скоростью 200 км/с газовый диск, состоящий из молекулярного н атомарного водорода (рис. 45.42). Центральная протяженная зона НИ имеет вид сфероида радиусом около 150 ПК и массой около 10 Л .  [c.1223]

Особенности рентгеновских спектров. Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше энергии оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров раз-.пичных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры  [c.293]

Рентгеновские спектры поглощения  [c.293]


Оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента, а рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания и состоят из нескольких полос с резким длинноволновым краем.  [c.294]

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т. е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис. 89) образуется в результате выбивания электрона из самой внутренней оболочки атома-К-обо-  [c.294]

На рис. 89 видно, что каждая из полос поглощения имеет тонкую структуру в А -полосе есть один максимум, в L-полосе-три максимума, в М-по-лосе-пять максимумов. Это объясняется тонкой структурой рентгеновских термов.  [c.295]

Для качественной оценки структуры двумерных аморфных фаз с успехом применяется уже упомянутая методика малоуглового рассеяния рентгеновских лучей, а также анализ протяженной тонкой структуры рентгеновского поглощения (обычно рассматриваются переходы с уровней внутренних А" и I оболочек атомов) — метод ПТСРП. Для реализации последнего необходимо мощное монохроматическое синхротронное излучение. Применяя Фурье-анализ, удается определить межъядерные расстояния с1 в неупорядоченных слоях межфазных границ, а при применении поляризованного излучения — также и искажения валентных углов.  [c.136]

Интересно, что на фоне стационарного энергетического выхода наблюдаются особенности, связанные с экситонны м возбуждением, структурой основного поглощения, возбуждением плазмонов и др. Именно благодаря этому удается извлечь из спектров возбуждения люминесценции кристаллов информацию о тонкой структуре рентгеновского поглощения в методе EXAFS и испатьзовать ее для структурных исследований.  [c.259]

Рентгеновское просвечивание основано на различном поглощении рентгеновского излучения участками металла с дефектами и без них. Сварные соединения просвечивают с помощью специальных рентгеновских аппаратов. С одной стороны шва 3 на некотором расстоянии от него помещают рентгеновскую трубку /, с другой (противоположной) стороны к нему плотно прижимают кассету 4 с рентгеновской пленкой (рис. 5.56, а). При просвечивании рентгеновские лучи 2 проходят через сварное соединение и облучают пленку. Для сокращения экспозиции просвечивания в кассету с пленкой закладывают усиливающие экраны. После проявления пленки на ней фиксируют участки повышенного потемнения, которые соответствуют дефектным местам в сварном соединении. Вид и размер дефектов определяют сравнением пленки с эталонными снимкамн.  [c.244]

Радиационные методы контроля являются надежными и широкораспространенными методами контроля, основанными на способности рентгеновского и гамма-излучения проникать через металл. Выявление дефектов при радиационном просвечивании основано на различном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источники излучения, С противоположной стороны плотно поджимают кассету е чувствительной пленкой (рис. 79). При просвечивании лучи проходят  [c.149]

Наряду с рентгенографированием, т. е. экспозицией на пленку, применяют рентгеноскопию, т. е. получение сигнала о дефектах при просвечивании металла на экране. Экран покрывают флюоресцирую- щими веществами (платино-синеродистый барий, сернистый цинк и др.), которые дают свечение при действии рентгеновского излучения В связи с различной степенью поглощения излучения в разных участках металла свечение различно. Контроль рентгеновским излучением с использованием экранов применяют в сочетании с телевизионными устройствами, преобразующими рентгеновское изображение в видимое (установка типа РИ — рентгенотелевизионный интроскоп). Чувствительность рентгеноскопического контроля не уступает рентгенографическому (1% и более), а производительность выше. Преимуществом рентгенографии является наличие документа о качестве соединения в виде пленки.  [c.150]

Отрыв электрона может произойти и другими способами (при захвате /С-электрона ядром, при отрыве электрона под действием ядерного излучения того же элемента и поглощения соответствующего кванта рентгеновского излучения). На освободившееся место может перейти электрон одной из оболочек L, М, А/ и т. д. Все эти переходы создаются /(-серии рентгеновского спектра, состоящие из линий Ка, Kfi, Ку Очевидно, что в /С-серии самой длинной является /Са-линия, т. е. Аналогичным образом при переходе электронов па освободившееся место в L-оболочке из А1-, Л/-оболочек возникают La-, Lp-лииип и т. д. М- и Л/-серии рентгеновского спектра наблюдаются только у тяжелых элементов. Таким образом, спектры характеристического рентгеновского излучения состоят из линий, составляющ[[х несколько серий.  [c.161]

Применение для возбуждения коротко юлг ового (ультрафиолетового, рентгеновского и 7-излучения) излучения, энергия которого достаточна для возбуждения более одного центра свечения, может привести к тому, что квантовьп выход превысит единицу, т. е. один поглощенный квант может вызвать излучсиие двух и более квантов. Однако очевидно, что и в этом случае средняя энергия люминесценции среды будет меньшей поглони ииой.  [c.369]

Значительная часть потоков космических излучений, воздействующих на экипаж корабля, обладает высокими значениями линейных потерь энергии в биологической ткани (протоны и а-частицы небольщих энергий, легкие, средние и тяжелые ядра галактического космического излучения). Вследствие этого можно ожидать различий в биологическом действии потоков таких частиц по сравнению с действием стандартных излучений (рентгеновское или у-излучение с энергией около 250 кэв). Более того, при оценке воздействия потоков заряженных частиц с очень большими ЛПЭ необходимо также учитывать микрораспределение поглощенной дозы в треке заряженной частицы.  [c.271]


Наиболее убедительные доказательства существования эндоэдральной структуфы были получены с помощью ЭПР-, фотоэлектронной, мессбауэров-ской спектроскопии и рентгеновской спектроскопии поглощения, причем ЭПР-спектроскопия позволяет получить информацию об элеюронной структуре и химическом состоянии атомов в некоторых металлофуллеренах. Эта  [c.59]

Самой замечательной особенностью рентгеновского излучения является, как уже упоминалось, его способность проникать через непрозрачные для обычного света вещества. Уже сам Рентген широко исследовал эту способность рентгеновских лучей, наблюдая свечение флуоресцирующего экрана, помещенного на пути лучей за слоём исследуемого вещества. Рентген обнаружил, что поглощение рентгеновского излучения в каком-либо веществе не связано с его прозрачностью для обычных лучей. Так, например, черная бумага или картон поглощают ренгеновские лучи значительно слабее, чем стекло такой же толщины, особенно если оно содержит свинцовые соли.  [c.404]

Дальнейщие исследования поглощения рентгеновских лучей позволили установить количественную меру их жесткости. Измеряя интенсивность ) рентгеновских лучей до и после поглощающего вещества, можно установить закон их поглощения в виде соотношения  [c.405]

Фактор поглощения. Рентгеновское излучение, рассеянное кристаллом, значительно поглощается в нем, при этом поглощение зависит от угла рассеяния 0, плотности вещества р и линейного коэффициента рассеяния ji. При расчете интенсивности это поглощение учитывают, вводя в формулу для интенсивности множитель (фактор) поглои ения Ф=Ф(в, ц, р). Множитель поглощения зависит от геометрии кристалла.  [c.47]

Проходя через металл отливки, рентгеновские лучи частично поглощаются им, частично пронизывают металл, частично отражаются многочисленными поверхностями металлических кристаллов, давая рассеянное вторичное рентгеновское излучение. Интенсивность поглощения рентгеновских лучей металлом зависит от плотности элемента и от его места в Периодической системе элементов Д. И. Менделеева, от атомного номера. Чем больше атомный номер просЕючиваемого элемента, тем больше он поглощает рентгеновских лучей. Поглощенная энергия рентгеновских лучей вызывает появление "скрытогхз изображения" за счет изменений бромистого серебра, находящегхкя в эмульсии, и превращения его в металлическое состояние на экране установки или фиксирования изображения на фотопленке.  [c.376]

Область применения КЭД — расчет электронных оболочек атомов, спектров излучения и поглощения света атомами, рассеяние рентгеновского излучения, движение заряженных частиц в электрическом и магнитном полях, рассеяние электрона на электроне или позитроне и т. д. Выдающимся успехом квантовой электродинамики является объяснение отклонения магнитного момента электрона от предсказьлваемых классической электродинамикой значений.  [c.179]

Фотоэффект, эффект Комптона, рождение электронно-позитронных пар. Предположим, что через вещество распространяется монохроматический пучок фотонов. Энергию фотонов будем варьировать в широком интервале от оптического диапазона к рентгеновскому и далее — к -у-излу-чению. При прохождении через вещество интенсивность фотонного пучка будет уменьшаться за счет различных процессов фотон-электронного взаимодействия, приводящих к поглощению или рассеянию фотонов. Не будем принимать во внимание резонансные процессы взаимодействия излучения с веществом. Тогда остаются три процесса, приводящие к ослаблению фотонного пучка фотоэффект (фотоны поглощаются электронами), эффект Комптона (фотоны рассеиваются на электронах), рождение электроннв-позшп-  [c.157]


Смотреть страницы где упоминается термин Рентгеновские Поглощение : [c.77]    [c.29]    [c.31]    [c.254]    [c.268]    [c.216]    [c.404]    [c.659]    [c.923]    [c.178]    [c.966]    [c.968]    [c.293]    [c.295]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.156 ]



ПОИСК



Влияние поглощения рентгеновских лучей кристаллом

Граница поглощения рентгеновских

Граница поглощения рентгеновских лучей

Длины волн основных линий и краев поглощения рентгеновского излучения

Излучение рентгеновское — Коэффициент поглощения

Коэффициент поглощения рентгеновских лучей

Край поглощения рентгеновских луче

Поглощение

Поглощение нейтронов резонансное рентгеновских излучений

Поглощение рентгеновские лучи

Поглощение рентгеновских лучей в счетчиках Гейгера—Мюллера

Поглощение рентгеновских лучей и нейтронов

Поглощение рентгеновского излучения

Поглощение рентгеновского излучения при прохождении через вещество

Таблицы диаграммных линий и краев поглощения линий рентгеновского излучения для различных элементов



© 2025 Mash-xxl.info Реклама на сайте