Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ударные волны образование

К моменту прихода ударной волны, образованной прогревом энергией теплового излучения ядерного заряда, ударная волна от взрыва ВВ успела сжать термоядерную смесь в 60 раз. Еще в 100 раз термоядерная смесь была сжата за счет процесса радиационной имплозии.  [c.271]

Существуют еще и чисто акустические способы. К ним также нужно относиться с очень большой осторожностью, ибо звуковое поле в кавитационной области — это очень сложная смесь первичного звука и звука кавитации, который наряду с дискретными компонентами содержит еще и белый шум [8]. По-видимому, этот белый шум есть сумма спектров ударных волн, образованных кавитационными пузырьками. Если это так, то интенсивность белого шума должна определяться как количеством пузырьков, так и крутизной фронта ударных волн. Но именно эти факторы и ответственны за кавитационное разрушение.  [c.251]


Рассмотрим идеализированную плоскую ударную волну, образованную от воздействия мощного лазерного излучения с плотностью потока <7(2, г) = / (г, 1) + <у[(г, ш), где О - функция, медленно изменяющаяся со временем, а <7, (г, шг) - периодическая составляющая с СВЧ-частотой со, падающую на плазму нормально к ее поверхности по оси неподвижной системы координат 2 (фиг. 1). Будем считать, что функция с/, (2, ш) обладает следующими свойствами периодичности  [c.177]

Обзор работ по столкновению частиц и столкновению струй дан в работе [623]. Более подробный обзор литературы по инерционному осаждению и фильтрации выполнен в работе [243]. В связи с требованиями противообледенительной системы изучалось образование переохлажденных облаков на поверхности крыла самолета [82]. Процесс осаждения водяных капель при обтекании сверхзвуковым потоком двумерного клина, включая прохождение частиц через ударную волну, исследован в работах [696, 827]. Численный расчет процесса накопления водяных капель на поверхности лопаток компрессоров газовых турбин выполнен в работе  [c.211]

Наличие вязкости и теплопроводности приводит к возникновению ширины у слабого разрыва, так что слабые разрывы, как и сильные, представляют собой в действительности некоторые переходные слои. Однако в отличие от ударных волн, ширина которых зависит только от их интенсивности и постоянна во времени, ширина слабого разрыва растет со временем, начиная с момента образования разрыва. Закон, по которому происходит это возрастание, легко найти (качественно) исходя из аналогии между перемещением слабого разрыва и распространением малых звуковых возмущений. При наличии вязкости и теплопроводности возмущение, сконцентрированное первоначально  [c.501]

Если поршень вдвигается в трубу (U = at), то возникает простая волна сжатия соответствуюш,ее решение получается просто изменением знака у а в формуле (1) (рис. 81,6). Оно применимо, однако, лишь до момента образования ударной волны этот момент определяется по формуле (101,15) и равен  [c.532]

Определить время и место образования ударной волны при движении поршня по закону U = at", п > 0.  [c.532]

При п > 1 ударная волна возникает не на переднем фронте простой волны, а в некоторой промежуточной точке, определяемой уравнениями (3). Определив из (3) значения т и можно затем по (2) найти и место образования разрыва. Вычисление дает  [c.533]

Образование разрывов в звуковой волне представляет собой пример самопроизвольного возникновения ударных волн в отсутствии каких бы то ни было особенностей во внешних условиях движения. Следует подчеркнуть, что хотя ударная волна может самопроизвольно возникнуть в некоторый дискретный момент времени, она не может столь же дискретным образом исчезнуть. Раз возникнув, ударная волна затухает в дальнейшем лишь асимптотически при неограниченном увеличении времени.  [c.537]


Искажение профиля цилиндрической волны растет медленнее, чем у плоской волны (где смещение бл растет пропорционально самому проходимому расстоянию х). Но и здесь оно, разумеется, приводит в конце концов к образованию разрывов. Рассмотрим ударные волны, образующиеся в достаточно далеко удалившемся от источника (оси) одиночном цилиндрическом звуковом импульсе.  [c.539]

Прежде всего необходимо сДелать следующее замечание. Если по обе сторо ы ударно во П Ы движение газа является сверхзвуковым, то (как было указа.ю i начале 92) можно говорить о направлении удар о волны и соответственно этому различать ударные волны, исходящие от линии пересечения, и волны, преходящие к ней. В первом случае касательная составляющая о орости направлена от линии пересечения, и можно сказать, что возмущения, вызывающие образование разрыва, исходят от этой линии. Во втором же случае воз лущения исходят из какого-то места, постороннего по отношению i линии пересечен ия.  [c.579]

Образование ударных волн при сверхзвуковом обтекании тел  [c.638]

Таким образом всякий импульс, в котором скорости частиц возрастают не мгновенно, но достигают значений, превосходящих скорость звука в газе, превращается в ударную волну. Так происходит, например, образование ударной волны при взрыве, когда давление образовавшихся при взрыве газов возрастает хотя и очень быстро, но все же с конечной скоростью. Но независимо от механизма возникновения ударной волны в реальном газе не могут существовать в буквальном смысле разрывы давления, плотности и скорости. Поэтому рассмотренный механизм возникновения ударной волны приводит не к образованию разрывов в буквальном смысле слова, а к возникновению у фронта импульса сжатия тонкого слоя с очень большими градиентами плотности, давления и скорости частиц. Но большие градиенты скоростей приводят к большим потерям энергии за счет вязкости, а большие градиенты сжатия, а значит и повышения температуры газа, — к большим потерям за счет теплопроводности. Поэтому потери энергии в ударной волне велики, и при распространении она гораздо быстрее ослабевает, чем слабый импульс сжатия.  [c.583]

Чтобы выяснить процесс образования ударной волны, представим себе полу-бесконечную трубу постоянного сечения, заполненную газом или воздухом (рис. 191, а). Пусть в этой трубе начинает двигаться поршень с постепенно возрастающей скоростью. Возникающая в начале движения поршня волна деформации (сжатия) в случае малой амплитуды волны распространяется вдоль трубы со скоростью относительно газа, близкой к скорости са звука в нем. За малый промежуток времени М с момента начала движения поршня она распространится вдоль трубы иа расстояние, равное Дальше же в трубе будет рас-  [c.239]

При распространении волн плотность потока энергии, как известно, пропорциональна квадрату частоты (см. 54). Поэтому в ультразвуковых пучках удается получить большую плотность энергии, даже при сравнительно небольших амплитудах колебаний. Уже при плотности потока энергии порядка десятков ватт на квадратный сантиметр ультразвуковые волны способны оказывать активное воздействие на среду, в которой они распространяются, вызывая в ней такие необратимые эффекты, как фонтанирование жидкости, ее распыление и т. д. Частицы жидкости могут при этом приобретать столь большие ускорения, что в момент фазы разрежения в жидкости образуются кавитационные пузырьки. При захлопывании их возникают огромные давления, измеряемые тысячами атмосфер, приводящие к образованию ударных волн.  [c.246]

Образование ударной волны около тела иллюстрируется рис. 10.4. Вблизи критической точки число Re имеет небольшое значение и потому можно предположить, что пограничный слой имеет ламинарный характер.  [c.385]

Пусть в преграду толщины к по нормали к свободной поверхности ударяется тело длины I и среднего диаметра к = 2г со скоростью Ос- В результате удара образуется отверстие. Экспериментально установлено, что при ударе тела длины /> 2/ о в преграду толщины /г > 2го отверстие имеет цилиндрическую форму [12], [27], поэтому можно пренебречь краевым эффектом и считать, что диаметр отверстия определяется только радиальным расширением. В этом случае расчет радиуса отверстия сводится к решению следующей задачи. В момент времени i = О в срединной поверхности преграды образуется отверстие й = 2го, в котором действует давление р , равное давлению за фронтом ударной волны в момент начала соударения и распространяющееся по срединной поверхности с образованием ударной волны. Требуется найти закон расширения отверстия и его диаметр по окончании процесса соударения, предполагая материал преграды за ударной волной жидким или идеально-пластическим. Плотность среды за ударной волной считается постоянной и определяется из условий, имеющих место на ударной волне в момент взаимодействия. Предполагается, что за время движения среда перед ударной волной находится в покое. Задача обладает цилиндрической симметрией и рассматривается в полярных координатах. Уравнения движения и неразрывности принимают вид  [c.193]


Таким образом, наличие затухания кардинально меняет картину распространения волны в нелинейной среде. При наличии конечного затухания для образования ударной волны необ.ходима достаточно большая амплитуда сигнала И, чтобы могли себя про явить нелинейные эффекты. Именно поэтому в оптике до появления мощных лазеров нелинейные явления практически не наблюдались,  [c.381]

В меньщей степени изучен механизм деформирования при щтамповке с использованием электрогидравлического эффекта и магнитных сил. Сущность первого способа заключается в том, что плоская заготовка деформируется по матрице ударной волной, образованной путем высоковольтного разряда в жидкости сущность второго — в том, что заготовка, помещенная внутрь катущки, деформируется в магнитном поле, возникающем при мгновенной разрядке мощных конденсаторов в рабочий виток катушки.  [c.208]

Влияние атмосферы. Сила сопротивления разреженной атмосферы определяется выражением F = —/>5 г г, где р —плотность атмосферы, S — площадь поперечного сечения спутника. С каждым оборотом апогей и перигей снижаются, причем перигей опускается медленней, чем апогей. Орбита приближается к круговой. Критической является траектория на высотах 1104-120 км. Далее она круто изгибается, и спутник, попадая в плотные слои атмосферы, сгорает. На высоте h = 120 км р = = 10 кг/м . Полагая 5" = 1 м , получим = 0,62 Н. Отношение возмущающего ускорения к ускорению, создаваемому силой тяжести, составляет т pS[R + h) = 6,5 10 " . На высоте /г = 20 км /9 = = О, Об кг/м , F = 378 Тс. Здесь возникает ударная волна, образование которой приводит к потерям полной энергии. Поскольку скорость спутника в 25 раз превышает скорость звука, то на его лобовой части образуется слой плазмы с температурой 7 + 9 тыс. градусов. Для обеспечения безопасности космонавтов используется способ теплозащиты, получивший название абляционного (от лат. ablatio — устранение). Лобовая часть покрывается пластмассой, которая плавится и испаряется, поглощая тепло и уменьшая поток теплоты внутрь космического аппарата.  [c.48]

В монографии изложены результаты иееледований в облаети теоретической и вычислительной трансзвуковой аэродинамики. Помимо общих вопросов трансзвуковой теории рассматриваются следующие проблемы фундаментально-прикладного характера трансзвуковое вихревое течение за отошедшей ударной волной образование и свойства висячих скачков уплотнения обтекание профиля крыла при больших дозвуковых скоростях полета, в частности, профилирование докритического крыла профилирование сопла Лаваля в корректной постановке и прямая задача сопла струйное трансзвуковое обтекание теория осесимметричных трансзвуковых течений некоторые вопросы, актуальные для пространственных течений.  [c.2]

Рассмотрим поведение слоистой системы из фторопласта, показанной на рис. 6.25. Систе.ма нагружается ударной волной, образованной при взрыве ТГ 50/50, которая распространяется слева направо. Параметры фторопласта то же, что и в предыдущей задаче. Толщина пластин 6 = 1.5 мм, толщина зазоров бг = 1.4 мм. При столкновении пластин граничное условие на сиободной иоверхности изменялось на граничное условие на контактной поверхности. Разрушением пластин пренебрегалось. Расчет проводился сквозным методом Уилкинса, искусствеппая вязкость выбиралась из условия размазки ударной волны на 3—4 ячейки.  [c.243]

Хорошо известно, что под действием потока газа, скорость которого превышает некоторую критическую, капля жидкости или струя разрушается. Это явление приводит к нелинейным колебаниям процесса горения в ракетных двигателях. Лейн [457] и Волынский [854] экспериментально определяли критические условия разрушения. Моррелл [555] исследовал струю воды под действием поперечных ударных волн. Наблюдались два основных типа процесса дробления жидкости. При одном из них возмущение капель заканчивается образованием нерегулярных струек. При втором происходит сдувание жидкости в форме пузырьков. Капля может принять линзообразную форму, и жидкость срывается с ее внешнего края. Обобщенная модель обоих типов процессов дробления пред.чожена Морре.т.чом [555].  [c.146]

В отношении способов возникновения слабые разрывы существенно отличаются от сильных. Мы увидим, что ударные волны могут образовываться сами по себе, непосредственно в результате движения газа, при непрерывных граничных условиях (например, образование ударных волн в звуковой волне 102). В противоположность им слабые разрывы не могут возникать сами по себе их появление всегда связано с какими-либо особенностями в граничных или начальных условиях движения. Особенности эти могут быть, как и сами слабые разрывы, самого различного характера. Так, причиной образования слабого разрыва мол<ет являться наличие углов на поверхности обтекаемого тела па возникающем в этом случае слабом разрыве испытывают IU40K первые производные скорости по координатам. К образованию слабого разрыва приводит также и скачок кривизны поверхности тела без угла на ней (причем испытывают разрыв вторые производные скорости по координатам) и т. п. Наконец, всякая особенность в изменении движения со временем влечет за собой возннкновенне нестационарного слабого разрыва.  [c.501]

Существенно, что скачки различных величи[ в разрывах начальных условий (или, как мы будем говорить, в начальных разрывах) могут быть соверщенно произвольными между ними не должно существовать никаких соотношений. Между тем, мы знаем, что на поверхности разрывов, которые могут существовать в газе в качестве устойчивых образований, должны соблюдаться определенные условия так, скачки плотности и давления в ударной волне связаны друг с другом ударной адиабатой. Поэтому ясно, что если в начальном разрыве эти необходимые условия не соблюдаются, то з дальнейшем он во всяком случае не сможет продолжать существовать как таковой. Вместо этого начальный разрыв, вообще говоря, распадается на несколько разрывов, каждый из которых является каким-нибудь из возможных типов разрывов (ударная волна, тангенциальный разрыв, слабый разрыв) с течением времени эти возникшие разрывы будут отходить друг от друга ).  [c.519]


Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т, е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси х) может двигаться либо одна ударная волна, либо одна пара слабых разрывов, ограничивающих волну разрежения. Действительно, если бы, скажем, в положительном направлении оси х распространялись две образовавшиеся в одном и том же месте в момент t = О ударные волны, то передняя из них должна была бы двигаться со скоростью большей, чем скорость задней волны. Между тем согласно общим свойствам ударных волн первая должна двигаться относительно остающегося за ней газа со скоростью, меньшей скорости звука с в этом газе, а вторая должна двигаться относительно того же газа со скоростью, превышающей ту же величину с (в области между двумя ударными волнами с = onst), т. е. должна догонять первую. По такой же причине не могут следовать друг за другом в одну и ту же сторону ударная волна и волна разрежения (достаточно заметить, что слабые разрывы движутся относительно газов впереди и позади них со звуковой скоростью). Наконец, две одновременно возникшие волны разрежения не могут разойтись, так как скорость заднего фронта первой равна скорости заднего фронта второй.  [c.520]

Если же рс > р, то обтекание края отверстия сопла происходит по типу рис. ПО с образованием отходящей от края отверстия ударной волны, повышающей давление от р до р . Это возможно, однако, лишь при не слишком больших превышениях Ре над р, когда интенсивность ударной волны не слишком велика в противном сучае отрыв возникает на внутренней поверхности сопла и ударная волна перемещается вместе с ним внутрь сопла, о чем уже шла речь в 97.  [c.590]

Во-вторых, если угол атаки i превысит максимальный угол отклонения потока в косом скачке уплотнения тах для заданного числа Ml набегающего потока (см. рис. 3.12) при i > Ютах перед нижней стороной пластинки образуется отошедшая ударная волна. Случай, когда i > omax, может иметь место при не очень больших числах Mi (например для Mi = 1,5 угол пр = = 12 ). Важно отметить, что при М] < 6,4 всегда тах < пр, и поэтому причиной неприменимости изложенной схемы расчета является образование перед пластинкой отделившегося криволинейного скачка уплотнения. При очень больших числах Mi, наоборот, пр < mai и причиной неприменимости расчетной схемы является срыв с верхней стороны пластинки.  [c.45]

При больших числах Маха (0,7 и б мее) сопротивление резко возрастает из-за образования ударных волн их в/ияние можно уменьшить, если заострить носовую часть тела. В частности, la рис. XIV.8 видно, что наименьший коэффициент сопротивления имеют снарэды с наиболее остры,ми очертаниями носовой части.  [c.234]

Число Маха Ма = Wq/ является мерой сжимаемости газа при больших скоростях течения. При достаточно малых значениях числа Маха изменение плотнбсти газа настолько мало, что газ можно рассматривать как несжимаемую жидкость. При Ма > 1 поток газа существенно отличается от потока газа при Ма < 1 в сверхзвуковом потоке газа возможно образование ударных волн, в дозвуковом потоке ударные волны никогда не образуются. Равным образом существенные отличия имеют трансзвуковой (Ма  [c.369]

Итак, ударные волны характеризуются следующими свойствами 1) скорость распространения ударной волны больше скорости звука в невозмущенной среде 2) на фронте ударной волны параметры состояния и движения среды изменяются скачкообразно 3) ударная волна сопровождается перемещением частиц тела в направлении движения фронта волны 4) скорость ударной волны зависит от интенсив юсти возмущений 5) при образовании ударной волны энтропия возрастает с1зх>0.  [c.40]

При прохождении ударной волны через газовзвесь частпцы отбирают у газа часть его кинетической и тепловой энергии, ускоряя тем самым затухание конечных возмугценпй. Это обстоятельство проиллюстрировано на рис. 4.5.4, где приведены результаты расчета взаимодействия ударного импульса, образованного в газе, с газовзвесью. Ударный импульс в газовзвеси затухает и замедляется как за счет волны разрежения от задней неподвижной стенки (а = —0,75 м), так и за счет частиц. При этом, в отличие от чистого газа, где структура волны близка к треугольной (штрихнуиктирные линии), наличие частиц трансформирует структуру волны в холмообразную.  [c.355]

Рассматривая разные варианты с увеличивающимся размером частиц, можно увидеть, что отходы сепаратрисы Xi и ударной волны Ху увеличиваются при росте радиуса частиц а до некоторого значенияя 300 мкм. При дальнейшем увеличении радиуса частиц отраженные частицы вылетают за головную ударную волну, создавая возмущение перед ней и приводя к образованию двух волн сжатия (см. р х) и Vi x) для а = 400 мкм на рис. 4.8.3). При этом давление на теле х = 0) и, в частности, в точке торможения (х = О, у = 0) за счет дополнительного искривления линий тока газа и поперечного его отвода становится существенно меньше, чем для режима обтекания чистым газом (рзо = 0). При дальнейшем увеличении размера частиц возникает тенденция к восстановлению головной ударной волны п к обратному приближению ее к телу (см. р х) и Vi x) для а — 400 мкм и а = оо на рис. 4.8.3), когда картина течеппя газа приближается к топ, которая дается замороженной схемой на = э , соответствующей течению чистого газа. В этом диапазоне режимов с вылетом отраженных частиц за головную ударную волну преобладает тормозящее действие газа отраженными частицами, а не дополнительное пс-кривленпе линий тока газа.  [c.395]


Смотреть страницы где упоминается термин Ударные волны образование : [c.176]    [c.156]    [c.226]    [c.505]    [c.530]    [c.532]    [c.544]    [c.570]    [c.605]    [c.473]    [c.74]    [c.92]    [c.128]    [c.39]    [c.87]    [c.88]    [c.241]    [c.253]   
Альбом Течений жидкости и газа (1986) -- [ c.0 ]



ПОИСК



Волны ударные

Косая ударная волн образование

Образование волн

Образование ударной волны огибающей

Образование ударных волн при сверхзвуковом обтекании тел

Образование ударных волн. Скачки уплотнения

Прямая ударная волна образование

Распространение непрерывных возмущений конечной интенсивности. Характеристики. Образование разрывной ударной волны

Течение газа с образованием криволинейных ударных волн



© 2025 Mash-xxl.info Реклама на сайте