Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перемещения, деформации и напряжения в конечном элементе

Перечисленным вопросам посвящена данная книга. Она имеет инженерную направленность и содержит комплекс необходимых сведений о решении прикладных задач термопрочности, включая численную реализацию эффективных методов решения таких задач на ЭВМ и описание соответствующих алгоритмов- расчета. Определение температурных полей и полей перемещений, деформаций и напряжений в реальных элементах конструкций сложной геометрической формы при упругом и тем более неупругом поведении материала является трудоемким даже с использованием современных ЭВМ. Поэтому особое внимание в книге уделено интегральной формулировке задач теплопроводности, термоупругости, пластичности и ползучести, на основе которой строятся достаточно гибкие и универсальные методы решения таких задач (методы конечных и граничных элементов).  [c.5]


Так как каждый элемент вектора Ur есть функция от координат X, у, Z для точек области г, конечного элемента, то и элементы вектора г и lOr, т. е. виды деформаций и напряжений Ех, еу,Хху,Ох и т. д., также будут функциями координат х, у, z. Подставив конкретное значение х, у, z для рассматриваемой точки, получим величины всех компонентов напряженно-деформированного состояния в этой точке. Это не должно создавать иллюзии, что решение задачи по МКЭ получается в аналитическом виде основным результатом решения задачи являются дискретные значения узловых перемещений q. Значения же перемещений, деформаций и напряжений в произвольной точке Qr в данном случае нужно рассматривать как своеобразные интерполяционные выражения. Причем закон интерполяции обусловлен системой аппроксимирующих функций фг, т. е. принят на самых ранних этапах расчета. Следует отметить, что метод перемещений обусловливает разрывы напряжений и деформаций на границах конечных элементов..  [c.105]

Приведенная расчетная формула не позволяет определить другие геометрические параметры УЭ. Выделенную штриховыми линиями четвертую часть УЭ разделяли на ряд элементов, в узловых точках которых определяли деформации и напряжения методом конечных элементов. Изготовленный по этой схеме ТДС на номинальное усилие 10 кН с внешним диаметром УЭ О = 104 мм, высотой й = 32 мм, площадью сечения балки УЭ Л = 19 мм и тензорезисторами с коэффициентом тензочувствительности к = 2 имел следующие параметры перемещение УЭ под нагрузкой / = 0,08 мм коэффициент передачи 2,5 мВ/В нелинейность 0,015% повторяемость 0,01% гистерезис 0,015% перегрузка, вызывающая  [c.117]

После введения указанных упрощений тело можно рассматривать как дискретную систему, т. е. как совокупность элементов, соединенных между собой в узловых точках. Разбиение конструкции на подобласти и выбор аппроксимирующих функций для каждой из них можно осуществить различными способами. При этом должны быть учтены особенности геометрии тела и обеспечена хорошая аппроксимация перемещений, деформаций и напряжений для всего тела в целом. В этом случае решение, полученное по методу конечных элементов, будет в пределе (при уменьшении размеров элементов) стремиться к точному. Более подробно вопрос о сходимости приближенного решения к точному будет рассмотрен в гл. 6.  [c.108]

Для пояснения процедур формирования разрешающей системы линейных алгебраических уравнений МКЭ рассмотрим трактовку МКЭ, соответствующую методу перемещений при решении задач теории упругости. Будем считать, что конечные элементы взаимодействуют лишь в узловых точках. Мысленно выделим отдельные конечные элементы и в узловых точках приложим реакции отброшенных частей. В пределах конечных элементов, эле-пользуя аппроксимации перемещений, получим уравнения равновесия элементов и определим связи реакций с обобщенными перемещениями узлов элементов и внешними нагрузками. Далее соединим в узлах элементы и запишем условия равновесия отдельных узлов. Для этого приравняем нулю для каждого узла сумму сил реакций от отдельных элементов, примыкающих к рассматриваемому узлу. Полученная система алгебраических уравнений позволит определить неизвестные узловые обобщенные перемещения, через которые в дальнейшем можно вычислить деформации и напряжения в элементах.  [c.281]


На рис. 77, а представлена одна из конструкций несущих платформ. Основными конструктивными элементами платформы являются пол, усиленный продольными ребрами замкнутого сечения, боковые борта, имеющие наклонный участок при переходе к полу, обвязки переднего борта, обвязки боковых бортов и задняя обвязка. Все обвязки имеют замкнутое сечение. Таким образом, платформа представляет собой пространственную тонкостенную конструкцию, которая эквивалентна открытой призматической (складчатой) системе. Расчет такой конструкции можно вести методом конечных элементов (МКЭ) с использованием балочного и оболочечного элементов. Для расчета автомобильных конструкций в настоящее время наиболее часто используют плоский треугольный симплекс-элемент. Например, таким элементом можно моделировать борта платформы. Однако функция, характеризующая перемещения в плоскости такого элемента, представляет собой полином первой степени, поэтому распределение деформаций и напряжений по стороне элемента постоянно, в то время как при закручивании открытых призматических (складчатых) систем каждая складка-пласти-на работает на изгиб в своей плоскости, что приводит к неравномерному распределению деформаций по ширине пластины. На рис. 77, б приведено характерное распределение деформаций по контуру призматической оболочки при кручении, соответствующее эпюре секториальных координат. По ширине наклонной пластины происходит резкое изменение продольных деформаций. Если этот участок моделировать треугольным элементом, то распределение деформаций будет равномерным, что приведет к большим ошибкам  [c.135]

При решении инженерно-геологических задач аргументами, зависящими от номера узлов, являются показатели деформационных свойств грунтов, действующие в этих узлах силы и перемещения. Записав в конечно-разностном вреде связь между силами и перемещениями для каждого узла, получим систему линейных алгебраических уравнений, решение которой приводит к отысканию перемещений узлов. Точность решения зависит от выбора сетки и способа решения системы. По найденным перемещениям определяют деформации и напряжения в узловых точках. Все зависимости при практическом использовании метода записываются в матричной форме. В большинстве случаев (как и в методе конечных элементов) они базируются на теории упругости, однако возможно применение и других зависимостей.  [c.52]

В результате решения системы уравнений (7.96) с учетом граничных условий задачи определяются скорости узловых перемещений в глобальной системе координат. Для определения напряжений в каждом элементе осуществляется переход к локальным координатам. Затем по соотношениям (7.85) и (7.88) вычисляются скорости деформаций и компоненты напряжений во множестве точек деформируемой мембраны. В конце интервала времени координаты узлов сетки конечных элементов изменяются и расчет продолжается далее. Для выхода из нуля необходимо задать первоначальную форму мембраны одним из возможных способов. Наиболее просто начальная форма задается приблизительно таким образом, чтобы удовлетворялись граничные условия.  [c.191]

TOB МОЖНО С успехом использовать в задачах, требующих определения внутренних деформаций и напряжений, перемещений, мод колебаний и потери устойчивости и целого ряда других параметров. Это положение имеет место для многих областей, которые обычно считаются не связанными друг с другом техническими дисциплинами, например в строительной механике, машиностроении, судостроении и аэрокосмической технике. Метод конечных элементов обеспечивает получение решений в этих и других областях на основе единой методики.  [c.30]

Линейные соотношения, связывающие перемещения и деформации, относятся лишь к заданию геометрических характеристик деформации и применимы как в случае плоского напряженного, так и плоского деформированного состояния. Следовательно, соответствующие соотношения содержатся в (4.7), и принципиальное различие между конечно-элементными формулировками для плосконапряженного и плоско-деформированного состояний заключается в различии законов, связывающих деформации и напряжения, т. е. законов (11.3) и (9.3). Поэтому здесь справедливы построения из гл. 9, включая использование концепции элементов высоких порядков, рассмотрение альтернативных вариантов с использованием в элементах дополнительных узлов и степеней свободы в виде производных от перемещений, а также применение изопараметрического представления геометрии элемента.  [c.327]


В этом отношении значительно большими возможностями обладает метод конечного элемента [88]. В основу этого метода положено расчленение рассматриваемой области на отдельные элементы простой геометрической конфигурации, причем достаточно широкие возможности открываются уже при введении в расчет элементов прямоугольной и треугольной формы. Сочленение элементов осуществляется в узлах, в которых полностью удовлетворяются условия равновесия и неразрывности перемещений. Разрезание рассматриваемой области приводит к кажущемуся нарушению условий неразрывности перемещений на участках между узлами, в значительной степени компенсируемому предположением о линейном законе изменения напряжений в любом сечении элементарного элемента. Это обусловливает наложение на деформации элемента сильно ограничивающих их связей, которые, с одной стороны, имеют тенденцию улучшить условия соблюдения неразрывности деформации, а с другой,— не вызывает концентрации напряжений в узловых точках.  [c.115]

Второй путь решения задачи заключается в задании поля возможных напряжений. В этом случае к узловым точкам относят напряжения а ., Оу., х у. и вводят предположение об их распределении, в частности линейном, в пределах каждого конечного элемента. Далее определяют деформации и перемещения как функции узловых напряжений. Используя потом условие минимума энергии, приходим к системе алгебраических линейных уравнений относительно узловых напряжений. Подобный подход является аналогом классического метода сил, широко применяемого в строительной механике. Отнесение энергии к каждому конкретному конечному элементу позволяет опять получить достаточно простые формулы, существенно систематизирующие расчет.  [c.119]

Таким образом, перемещения иг, компоненты деформации и компоненты напряжения определяются равенствами (9.449), (9.451) и (9.460) в зависимости от перемещений узлов конечного элемента.  [c.332]

Расчет на прочность элементов теплотехнического оборудования состоит из двух этапов. На первом этапе вычисляют напряжения, деформации и перемещения в элементах конструкций, подверженных воздействию внешних нагрузок, или вычисляют некоторые предельные значения этих нагрузок. Решению этой задачи служат методы механики материалов и конструкций, строительной механики, теории упругости и т.п. Конечная цель инженерного расчета на прочность — это решение вопроса о том, сможет ли конструкция достаточно надежно служить в течение установленного срока. Второй этап расчета состоит либо в сопоставлении вычисленных напряжений, деформаций и перемещений с некоторыми нормативно допустимыми значениями, либо в сопоставлении расчетных нагрузок с их предельными значениями. На втором, весьма важном этапе расчета решается вопрос, является ли конструкция достаточно надежной, долговечной и экономичной.  [c.399]

Другим популярным трехмерным сингулярным элементом является вырождающийся изопараметрический элемент [2], обладающий сингулярной типа ij sjr матрицей геометрического преобразования, обратной к матрице Якоби. Специальные клинообразные элементы (с углом раскрытия а, причем а = 2я/п, где п — число элементов, окружающих фронт трещины) используются достаточно широко благодаря их универсальности при описании не только поведения деформации типа Xj sjr, но и за счет представления изменения деформаций в зависимости от 0. При использовании этих сингулярных элементов коэффициент интенсивности напряжений, изменяющийся вдоль фронта трещины, рассчитывают, используя конечно-элементное решение, путем экстраполяции перемещений [3] или напряжении [4] в окрестность фронта трещины.  [c.184]

Для этого заданного граничного перемещения (заметим, что узловые перемещения q сингулярного элемента должны быть найдены с помощью глобального конечно-элементного решения) мы стараемся определить поле напряжений в элементе, которое было бы уравновешенным и соответствовало совместимому полю деформаций. Из этого решения, выражающего напряжения через q, можно найти энергию деформации трещинного элемента  [c.200]

Рассмотрим пример использования векторного метода, в определенном смысле противоположный предыдущему. Если в задаче о трубке использование векторного метода является совершенно естественным (деформация может быть описана с помощью малого числа базисных функций), то исследование плоского напряженного состояния вблизи геометрического концентратора относится к числу задач, для которых использование МКЭ представляется более предпочтительным. В этом случае перемещения изменяются далеко не плавно, базисные функции должны зависеть от двух аргументов. В то же время внешние силы приложены в области, далекой от концентрации напряжений, и прямо не влияют на напряжения в зоне концентрации последние должны определяться только геометрией, связями между конечными элементами. Такая задача относится к числу наиболее неудобных для применения векторного метода.  [c.246]

Построена и изучена с точки зрения стационарности и экстремальности система полных и частных функционалов в случае разрывных полей перемещений, деформаций, напряжений и функций напряжений некоторые вариационные принципы для таких полей впервые рассматривались В. Прагером [0.12]. Аналогичные вопросы рассмотрены и в теории оболочек. Необходимость рассматривать разрывные поля в качестве возможных состояний упругого тела возникает иногда при численном решении задач, в частности при использовании метода конечных элементов.  [c.10]

Расширение приложений являлось одной из главных целей подготовки нового издания. Приложения А — N посвящены четырнадцати различным темам. Среди новых тем, включенных в приложения, отметим Вариационные принципы в динамике системы материальных точек (приложение В), О функциях энергии деформации и дополнительной энергии (приложение D), О различных видах тензоров напряжений в теории конечных перемещений (приложение Е) и О методе граничных элементов (приложение N).  [c.8]


При решении задачи статики многослойных панелей общего вида методом конечных элементов (МКЭ) на основе вариационных формулировок смешанного типа (4.41), (4.42) требования к выбору функций формы остаются такими же, как и в методе перемещений. В качестве функций формы конечного элемента наиболее часто используются алгебраические полиномы, порядок которых должен обеспечивать требуемую гладкость функций и их производных. В МКЭ важным требованием к функциям формы является требование воспроизводить в элементе однородное напряженно-деформированное состояние и, в частности, описывать смещение элемента как жесткого целого. Наиболее распространенный способ удовлетворения указанным требованиям состоит в повышении порядка аппроксимирующих полиномов. При этом используются полиномы более высокого порядка, чем это требуется, исходя из структуры вариационных уравнений, что приводит к увеличению обобщенных степеней свободы конечного элемента. Применение смешанных вариационных формулировок позволяет с помощью независимой аппроксимации деформаций и перемещений улучшить свойства конечных элементов.  [c.190]

Все расчеты дают для обоих видов нагружения существенные отклонения изгибных напряжений от найденных в эксперименте. Эта тенденция, наблюдавшаяся и раньше, объясняется рядом причин, общий вклад которых, очевидно, недооценивается поправкой на локальную гибкость шпилек, вводимой в модели жесткого кольца и по существу включенной и в схему метода конечных элементов путем заделки эквивалентной балки в упругое полупространство. Этими причинами являются (а) гибкость за счет резьбовых соединений шпилек с нижним фланцем и гайками (б) дополнительная гибкость, вводимая гайками и шайбами, передающими изгибные моменты от шпилек на кольцо верхнего фланца (в) появление изгибных напряжений вследствие двух различных типов деформаций — относительного поворота колец нижнего и верхнего фланцев и относительного радиального перемещен  [c.44]

Общее распределение напряжений. На рис. 31 для сосуда 3 приведены кривые равных уровней кольцевых напряжений и интенсивностей напряжений, вычисленные по методу упругопластических конечных элементов для области вне действительной зоны контакта (и, следовательно, совпадающие с расчетами по упругой модели материала )). На рис. 31 представлены два характерных вида нагружения — затяг шпилек и последующее нагружение внутренним давлением. Сравнение с экспериментальными данными не проводится, так как согласие расчета и экспериментов для напряжений не может быть лучше, чем для перемещений, определенных непосредственно по измеренным в опыте деформациям и уже сравнивавшихся выше с результатами вычислений. Поэтому имеет смысл обсуждать только различие в расчетах напряжений по методу конечных элементов и модели жесткого кольца, но, очевидно, это различие должно иметь такой же общий характер, как и различие в перемещениях.  [c.48]

Допуш,ения о характере деформаций. Пере.че-ш,ения, возникающие в конструкции вследствие упругих деформаций, невелики. Поэтому при составлении уравнений статики исходят из размеров недеформированной конструкции — принцип начальных размеров. Перемещения отдельных точек и сечений элементов конструкции прямо пропорциональны нагрузкам, вызвавшим эти перемещения. Конструкции (системы), обладающие указанным свойством, называют линейно деформируемыми. Необходимым условием линейной деформируемости системы является справедливость закона Гука (линейной зависимости между компонентами напряжений и дефор.маций) для ее материала. В некоторых случаях, несмотря на то, что материал конструкции при деформировании следует закону Гука, зависимость между нагрузками и перемещениями нелинейна (например, при продольно-поперечном изгибе бруса, при контактных деформациях). Линейно деформируемые системы подчиняются принципу независимости действия сил и принципу сложения (принципу суперпозиции). Согласно этим принципам, внутренние силовые факторы, напряжения, деформации и перемещения не зависят от последовательности нагружения и определяются только конечным состоянием нагрузок. Результат действия (перемещение и т. п.) группы сил равен сумме результатов действия каждой из сил в отдельности. При рассмотрении раздельного действия на конструкцию каждой из нагрузок необходимо учитывать соответствующие этой нагрузке опорные реакции. Для бруса в большинстве случаев справедлива гипотеза плоских сечений — сечения бруса, плоские и перпендикулярные к его оси до деформации, остаются плоскими и перпендикулярными к оси и после деформации. Эта гипотеза не справедлива, в частности, при кручении брусьев некруглого поперечного сечения. Для тонких пластин и оболочек принимают гипо-  [c.170]

Формирование системы осуществляется в порядке обхода конечных элементов, численное интегрирование по каждому из которых на итерации с использованием двухточечных квадратур Гаусса осуществляется один раз. Причем количество перемещений в каждом узле может быть равно двум или трем в зависимости от исходной информации задачи. По мере накопления части матрицы At,- с учетом ее структуры в отведенную порцию оперативной памяти ЭВМ осуществляется прямой ход по методу квадратного корня и затем записывается во внешнюю память. Такой порядок решения системы экономит число обменов с внешней памятью. Ширина ленты матрицы коэффициентов может изменяться от строки к строке. Результирующее решение получается накоплением Aui, Аа >, Aefy Aeiy от шага к шагу. Перемещения вычисляются в узлах конечных элементов, а деформации и напряжения — в центрах конечных элементов, где они имеют наибольшую точность [53].  [c.98]

Практический подход к вопросу сходимости дает выборочный тест Айронса [19, 20], который описывается здесь в общих чертах для задач механики твердого тела. В простейшей форме теста группа элементов, или кусок как минимум с одним невнутренним узлом, полностью окруженным элементами, нагружается на границе силами, соответствующими постоянным деформациям на всем куске. Если метод сходится, то по выборочному тесту вычисленные методом конечных элементов перемещения, деформации и напряжения должны согласовываться с приложенной постоянной деформацией. Тестом может служить также использование приложенных перемещений, соответствующих состоянию постоянной деформации на всем куске. Применимы также выборочные тесты более высокого порядка, требующие на всем куске согласования решения с более -сложными нагрузками, предписанными на границе. Выборочный тест не ограничивается полными -или согласованными элементами, а может также применяться для определения того, дают ли сходящееся решение элементы, не удовлетворяющие этим крите риям. Тест, разработанный на основании инженерной интуиции был обоснован математически Стренгом [21] как необходимый достаточный признак сходимости в следующих случаях а) ког да используются несогласованные элементы б) когда в фор мулы входит численное интегрирование. Как недавно указа/ Оливейра [22], этот признак можно распространить иа задачи отличные от задач механики твердого тела.  [c.177]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Решение задач теории упругости может быть проведено одним из двух методов С помощью первого метода решают дифференциальные уравнения с заданными граничными условиями. Второй метод заключается в минимизации интегральной величины, связанной с работой напряжений и внешней приложенной нагрузки. Для решения задач теории упругости методом конечных элементов используется последний подход. Если задача решается в перемещениях и на границе заданы их значения, то нужно минимизировать потенциальную энергию оистемы. Если задача решается в напряжениях с заданными на границе усилиями, то нужно минимизировать дополнительную работу оистемы. Общепринятая формулИ(ровка метода конечных элементов предполагает отыскание поля пб1ремещбний и тем самым связана с минимизацией по-тенциальной энергии системы при отыскании узловых значений вектора перемещений. После того как перемещения будут определены, можно вычислить компоненты тензоров деформаций и напряжений.  [c.79]

S Значения деформаций и напряжений на каком-либо фиксированном расстоянии от конца трещины мало подходят, если иметь в виду численные методы получения решения. Это связано с тем, что деформации зависят от формы и размеров конечньгх элементов, а также i OT их сложности. Более подходящим представляется использование Перемещений точек тела, являющихся интегралом относительных деформаций и обладающих достаточной стаблльностью при изменении формы m размеров конечных элементов. Такой подход был использован при обработке результатов испытаний образцов различных размеров из стали ЙОХНМФ [35].  [c.55]

Стивенсон [142] предложил более реалистичную модель. Он построил отдельные конечные элементы, состоящие из волокна с круговым поперечным сечением, помещенного в квадратную матрицу при этом он рассматривал волокна различных диаметров, находящиеся либо в центре матрицы, либо вне его. Напряжения, деформации и перемещения такого элемента определялись при помощи конечно-разностных схем. Образуя различные комбинации таких элементов с квадратными ячейками, не содержащими волокон, Стивенсон смог рещить некоторые интересные задачи. В частности, он рассмотрел схему из 25 элементов, содержащих как центральные, так и нецентральные волокна. Его результаты уточняют модель Адамса и Цая. Из-за недостатка машинного времени Стивенсон, работавший на UK4VA 1107 и 1108, не смог просчитать все примеры.  [c.91]

Здесь X = (Eu), Ev, М, Q) - вектор перемещений и усилий, соответствующих общему решению однородного дифференциального уравнения изгиба оболочки, растяжения или изгиба пластины либо растяжения или кручения кольцевого элемента Хо,ч. 1,ч то же для частного решения неоднородного уравнения АХ — вектор разрьгеов перемещений и усилий в сопряжениях Е - модуль упругости в пределах пропорциональности напряжений и деформаций А - матрица перехода от вектора Xq к вектору Xi нижние индексы О и 1 относятся к начальному и конечному краям элемента.  [c.206]

Прямоугольный конечный элемент оболочки двоякой кривизны. Для каждого из четырех узлов примем шесть степеней свободы— три линейных перемещения U, V, W соответственно по направлению осей х, у, z, угловые перемещения аир относительно осей X, д я величины х, моделирующие крутильную деформацию в каждом узле. Таким образом, общее число степеней свободы равно 24. Аппроксимацию перемещений Ux и Uy примем по аналогии с прямоугольным конечным элементом плоского напряженного состояния, т. е. в виде (1.20), а аппроксимацию Uz по аналогии с прямоугольным элементом плиты Богнера — Фокса — Шмидта, т. е. в виде (1.22).  [c.44]

Будем считать, что краевая задача теории упругости или пластичности решается по методу конечных элементов [16], а дискретная модель строится нз 20-узловых квадратичных конечных элементов. Типичный диск из конечных элементов вокруг сегмента фронта трещины изображен на рис. 3. Предполагаем, что для реализации расчета по методу ЭОИ в нашем распоряжении имеются перемещения в узлах конечных элементов, а также значения деформации, напряжений и работы напряжений на деформациях в гауссовых точках интегрирования 2X2X2.  [c.370]

Формулировку вариационных принципов этой теории, так же как и теории упругости для сплошного тела (см. гл. 3, 6), можно обобщить, рассматривая в качестве варьируемых переменных разрывные поля перемещений, деформаций, усилий и функций напряжений. Вариационные принципы при разрывных полях параметров напряженно-деформированного состояния могут служить для построения алгоритмов расчета оболочек, в частности при использовании метода Ритца и метода конечных элементов, а также для решения некоторых контактных задач.  [c.132]

За последние годы методы расчета, основанные на уравнениях в конечных разностях, были заменены методами конечных элементов (см., например, работу Дагдэйла и Ритца [22]). Суть этих методов состоит в том, что тело, которое до сих пор мы рассматривали как сплошную среду, подчиняющуюся определенным соотношениям напряжение — деформация, заменяется каркасом, состоящим из элементов обычно треугольной или трапецеидальной формы, что связано с двумерностью деформации. Совокупность элементов образует законченную решетку, внешняя форма которой соответствует форме непрерывного тела. Распределение напряжений в теле рассчитывают, рассматривая равновесие сил в общих точках или узлах решетки, а распределение деформаций — принимая во внимание перемещения этих узлов.  [c.80]

Райс указывает, что обычные численные методы (конечные разности или конечные элементы) не позволяют вычислить напряжения и перемещения с требуемой точностью у вершины трещины. Граничные условия вблизи вершины удовлетворяются с трудом, особенно в случае крупной сетки конечных разностей, требуемой для бигармонического уравнения (см. раздел 16 в гл. III). Во многих случаях только один из узлов помещается у вершины трещины, так что вариации смещений, существующие там, подсчитать невозможно. Поэтому в области веера весьма удобным является модифицированный четырехсторонний конечный элемент, ограниченный линиями г = onst, 0 = onst и дающий требуемую зависимость сдвиговой деформации Mr. Два узла элемента у вершины трещины расположены в одной физической точке, но позволяют получать разные смещения в зависимости от выбранной радиальной линии движения к трещине.  [c.86]

Формирование системы лвнейных алгебраических уравнений производится в соответствии с методом конечных элементов, а решение — по схеме Халецкого. По навденным перемещениям узловых точек вычисляются приращения напряжений и деформаций, а также приращения их интенсивностей.  [c.83]

Изгиб эквивалентной балки, моделирующей болты, учитывается в расчете по двум причинам для точного предсказания реальных деформаций фланцев и возможности сравнения вычисленных и измеренных в эксперименте напряжений в шпильках, связанных с изгибом. При этом должна быть установлена связь поворотов в узловых точках балки с поворотами фланцев. Она задается следующим образом определяются перемещевия узловых точек фланцев (как степени свободы конечных элементов), а перемещения узловых точек балкн выражаются линейным образом через смещение двух соседних узловых точек кольцевых элементов по формулам (см. рис. И)  [c.31]

С другой стороны, ползучесть сопровождается упругой и пластической деформацией. Непрерывный рост перемещений со временем вследствие ползучести может привести систему в такое состояние, что перемещения ее мгновенно изменяются на конечную величину. В геометрически нелинейных системах может произойти упругий хлопок, в пластических элементах — мгновенное выпучивание вследствие исчерпания упруго-пластического сопротивления. При решении задач ползучести момент хлопка или выпучивания обнаруживается тем, что скорость роста перемещений обращается в бесконечность при некотором конечном значении перемещений и конечном времени, которое принимается теперь за критическое. Как известно, для начально искривленного стержня из упруго-пласти-ческого материала величина критической сжимающей силы зависит от начального прогиба. Наоборот, если сила задана, то можно указать начальный прогиб, для которого эта сила будет критической. Увеличение прогиба вследствие ползучести можно считать эквивалентным увеличению начального прогиба упруго-пластического стержня таким образом, при любой величине сжимающей силы в некоторый момент достигается критическое состояние. Однако ползучесть вызывает перераспределение напряжений поэтому, как показал С. А. Шестериков (1963), приведенная простая схема пригодна лишь для однопараметрической системы. Исследование выпучивания стержней при наличии пластических деформаций численным методом дано в работе В. И. Ванько и С. А. Шестерикова (1967).  [c.145]



Смотреть страницы где упоминается термин Перемещения, деформации и напряжения в конечном элементе : [c.101]    [c.144]    [c.115]    [c.6]    [c.423]    [c.259]    [c.166]    [c.210]    [c.401]    [c.218]    [c.128]   
Смотреть главы в:

Метод конечных элементов в задачах строительной механики летательных аппаратов  -> Перемещения, деформации и напряжения в конечном элементе



ПОИСК



597 — Деформации и напряжения

Деформации конечные

Деформация перемещений

Конечные элементы перемещениях

Конечный элемент

Напряжение конечное

Напряжения, деформации и перемещения

Перемещения и напряжения



© 2025 Mash-xxl.info Реклама на сайте