Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории операторов

ЭЛЕМЕНТЫ ТЕОРИИ ОПЕРАТОРОВ  [c.38]

Особенность данной книги состоит в том, что в ней осуществлена систематизация задач теоретического исследования динамических свойств технологических аппаратов и способов их рещения. Технологический аппарат и процесс, который в нем осуществляется, с самого начала рассматриваются как технологическая система, т. е. ее математическое описание представляется в форме оператора, связывающего входные и выходные параметры процесса. Такой подход весьма удобен при построении моделей сложных систем, состоящих из нескольких связанных между собой технологических аппаратов. В связи с этим изложение динамики химико-технологических процессов дается на основе общих понятий теории операторов. Элементы этой теории, используемые при исследовании динамики, изложены во второй главе.  [c.4]


Согласно теории, изложенной в 5, нерезонансный процесс комбинационного рассеяния характеризуется в дипольном приближении матричными элементами тензорного оператора [Р], представляющего собой симметричный тензор второго ранга. В кубическом кристалле этот оператор преобразуется по приводимому представлению (т. 1, ПО, и т. 2, 5), поэтому  [c.217]

Одним из важных приложений теории групп к квантовой механике является установление правил отбора. В широком смысле слова под правилами отбора понимают критерий, позволяющий судить, может ли быть отличным от нуля матричный элемент некоторого оператора, если известно, по каким представлениям рассматриваемой группы преобразуются этот оператор и волновые функции. В теории излучения этот критерий применяется к матричному элементу оператора взаимодействия с электромагнитным полем и используется для определения вероятности перехода квантовомеханической системы из одного стационарного состояния в другое.  [c.227]

ГЛАВА 10 ВЕРОЯТНОСТИ ОПТИЧЕСКИХ ПЕРЕХОДОВ 10.1. Квантовые переходы п нестационарной теории возмущений 241 10.2. Квантовые переходы под влиянием гармонического возмущения 245 10.3. Оператор взаи.модействия электрона с полем световой волны. Операторы рождения и уничтожения фотонов 250 10.4. Матричные элементы оператора взаимодействия электрона с полем световой волны 257 ГЛАВА 11 ОДНОФОТОННЫЕ ПРОЦЕССЫ 11.1. Вероятности однофотонных процессов 261 11.2. Дипольные переходы  [c.239]

Оператор Т называется непрерывным, если из сходимости последовательности к вытекает сходимость последовательности Тхп к элементу Г . Докажем теорему всякий ограниченный оператор является непрерывным.  [c.69]

Поэтому все построения будем проводить в более узком гильбертовом пространстве, потребовав, чтобы каждый его элемент удовлетворял второму из условий (1.2) (5г = 5) и условиям (1.7). Теперь из условия (и, Аи) = О будет следовать, что и = 0. Таким образом, оператор теории упругости оказывается положительным.  [c.622]

При определенных условиях оперативной цепи решений можно поставить в соответствие марковскую цепь, что и сделано в гл. 5 при построении алгоритмов эффективности и оптимизации. С другой стороны, уровень настройки можно рассматривать как математическое ожидание стохастической функции х (т), признака качества, рассматриваемого как функция от количества повторений операции. Планы выборочных проверок становятся при таком подходе операторами преобразования. При расчете эффективности в условиях описанной модели использование теории стохастических функций может привести к резкому повы шению требований к математической подготовке читателя без заметных практи ческих результатов. В то же время не вызывает сомнения тот факт, что в уело ВИЯХ полной автоматизации технологических процессов с применением непрерыв кого статистического регулирования на базе электронных анализаторов с обраТ ной связью использование результатов теории случайных функций становится неизбежным, но все же в той или иной комбинации с элементами комплексной методологической схемы, предложенной в этой книге-  [c.46]


Правила Фейнмана в квантовой теории поля— правила соответствия между вкладами определ. порядка теории возмущений в матричные элементы матрицы рассеяния и Ф, д. Регулярный вывод ПФ основан на применении Вика теоремы для хронологических произведений к хронологическим произведениям полевых операторов, через интегралы от к-рых выражаются вклады в матрицу рассеяния. В ПФ центр, роль играют пропагаторы квантовых полей, равные их хронологическим спариваниям, т. е. вакуумным ожиданиям от парных хронологических произведений  [c.278]

В многомерном элементе с первым типом уравнений для функционального описания системы используется математический аппарат теории множеств, где систему управления S определяют как преобразование входа X в выход Y посредством некоторого оператора F процесса функционирования Z (см. рис. 7.2).  [c.277]

Поскольку системами, усиливающими возможности человека и выполняющими различные манипуляции, оператор управляет с помощью движений и путем приложения некоторых усилий, то необходимо обеспечить пространственное соответствие между конечностями оператора и элементами машины. Однако учета только антропометрических и инженерно-психологических данных, на основе которых были приняты решения о первых конструкциях, уже недостаточно. Кинематика, динамика и теория управления системами тесным образом связаны с биомеханикой и характеристиками человека. Эти вопросы слабо освещены в литературе (если не считать литературы по протезированию).  [c.145]

Полученные формулы, составляющие первое приближение теории возмущений, в случае оптических резонаторов имеют данную им в [8 весьма простую трактовку. Матричные элементы оператора возмущения с тп Ф I есть не что иное, как относительные амплитуды световых волн, рассеиваемых за счет возмущения из одних типов колебаний в другие. Величины  [c.147]

Основные понятия теории надежности носят универсальный характер и в принципе применимы к объектам самой различной природы и структуры. Эти объекты могут включать агрегаты, узлы, блоки, которые в свою очередь могут быть механическими, электрическими, химическими, биологическими и другими системами. Примером служит задача о надежности системы, состоящей из объекта управления, системы управления и человека-оператора. Практическое применение методов системной теории надежности для расчета ряда объектов связано с серьезными затруднениями. Сложный характер взаимодействия элементов и подсистем между собой, а также с окружающей средой, трудность или невозможность получения достаточной информации о показателях надежности элементов типичны для многих классов объектов, в том числе для большинства машин и конструкций (см. 1.3). Единственный путь для преодоления трудностей состоит в развитии направления теории надежности, которое естественным образом включает описание физических процессов взаимодействия объекта с окружающей средой, переход системы в неработоспособное состояние как физический процесс. При этом описание поведения объекта с точки зрения его работоспособности становится органически связанным с описанием процесса функционирования системы.  [c.34]

УНИТАРНОСТИ МГЛбВИЕ матрицы рассеяния — одно из ограничений, налагаемых на матрицу рассеяния, заключающееся в том, что она должна представлять собой унитарный оператор. В физ. смысле У. у, есть условие равенства единице суммы вероятностей всех возможных процессов, происходящих в системе. Напр., два сталкивающихся протона могут либо упруго рассеяться друг на друге, либо породить один или неск, я-мезонов или лару протон-антипротон и т.д, сумма вероятностей всех таких процессов, допустимых законами сохранения энергии, импульса, электрич. и барионного зарядов и т.д., согласно У. у,, равна единице. У. у.— одно из основных составляющих элементов теории рассеяния и дисперсионных соотношений метода. Частным случаем У. у. является оптическая теорема, связывающая мнимую часть амплитуды упругого рассеяния на нулевой угол с полным сечением рассеяния. А. В. Ефрс.чое.  [c.225]


Вопросы численного решения уравнений (3.3.15), (3.3.16) разработаны и представлены в литературе достаточно полно. Укажем, например, на монографии [65, 143, 178, 185, 211, 244], в которых аппарат функционального анализа и теории операторов составил основу исследования и строгого теоретического обоснования таких эффективных численных методов решения уравнения (3.3.15), как метод В. Ритца, И.Г. Бубнова—Б.Г. Галеркина, методы конечных элементов, конечных разностей и др. Методы, ориентированные на задачи устойчивости оболочек, описаны в [104]. Специальные вопросы численного решения краевых задач устойчивости анизотропных оболочек вращения обсуждаются в [19, 20, 144, 289]. Этим вопросам уделено значительное внимание и в настоящей монографии.  [c.65]

Аналитичность. Из спектральной теории операторов известно, что = Е — Я) 1 является аналитической операторной функцией Е, регулярной всюду в плоскости с правым разрезом, за исключением точек, соответствующих связанным состояниям. Спрашивается, почему же тогда S не регулярна с необходимостью там, где регулярна I/ Это различное поведение и 5 на физическом листе обусловливается тем, что матричные элементы 5 вычисляются для зависящих от энергии волновых функций, которые при комплексных значениях энергии не дгогут быть нормируемыми. Именно это обстоятельство ответственно за возможное отсутствие регулярности функции S там, где функция. V i регулярна, а равно и за возможное появление кратных полюсов у S в точках, в которых функция должна иметь только простые полюсы. Более того, поскольку соответствующий матричный элемент от вычета функции У может обращаться в нуль, то функция S к) необязательно должна иметь полюсы в точках полюсов для Поэтому исследование д как операторной функции Е намного проще исследования S-матрицы. В случае можно привлечь общий и хорошо разработанный операторный формализм S-матрицу же удобнее исследовать методами, которые используются в настоящей главе.  [c.328]

Здесь мы приводим некоторые известные результаты из теории операторов, которые будут использоваться в дальнейшем. Кроме того, в 1 гл. III дано доказательство теорем о сходимости собственных значений и собственных элементов для последовательности абстрактных операторов, определенных на разных пространствах. Подобные результаты для несамосопряженных операторов изложены в книге [11]. На этих теоремах основаны все дальнейшие исследования спектральных задач теории усреднения, а также вопросов о поведении спектров сингулярно возмущенных операторов, рассмотренных в данной главе.  [c.210]

Недавно ко мне обратилось московское издательство УРСС , которое специализируется по переводам научной и учебной литературы на испанский язык, а в последнее время активно издает монографии и учебники по физике и математике и на русском языке, с предложением опубликовать второе издание нашей книги, Я воспользовался этой возможностью, чтобы осуществить наши старые планы. Общая структура книги, рассчитанная на первое знакомство с предметом, полностью сохранена. Добавлено лишь несколько вопросов, имеющих принципиальное значение. В частности, добавлен параграф, посвященный классификации точечных групп по Вейлю, где задача об отыскании всех точечных фупп сводится к решению простых алгебраических уравнений в целых числах. Восполнено упущение первого варианта книга — приведено доказательство теоремы Вигнера—Эккарта, играющей важную роль в приложениях. Теорема Вигнера—Эккарта дает общее выражение для матричного элемента неинвариантного оператора на базисных функциях неприводимого представления. Применение теоремы Вигнера—Эккарта иллюстрируется на примере теории эффекта Зеемана.  [c.5]

Связанная система уравнений (50) и (51) по своей структуре аналогична системе, описывающей большие прогибы однородных пластин (см. работу Тимошенко и Войновского-Кригера [163] с. 418), включающей в отличие от системы (50), (51) нелинейные операторы, а также основным уравнениям линейной теории пологих оболочек ([163 ], с. 559). В нелинейной теории пластин й в теории пологих оболочек связь между уравнениями осуществляется через коэффициенты, зависящие от кривизны, а в рассматриваемом здесь случае слоистых анизотропных пластин эта связь вызвана неоднородностью материала (она осуществляется с помощью оператора включающего элементы матрицы 5 /, которые зависят, в свою очередь, от элементов матрицы Ац и матрицы Вц, входящих в исходные соотношения упругости). Это означает, что при постановке граничных условий на краях слоистой анизотропной пластины необходимо одновременно рассматривать силовые факторы и перемещения, соответствующие как плоскому, так и изгибному состояниям. При этом на каждом краю следует сформулировать по четыре граничных условия.  [c.178]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]


Излагаются новые результаты теоретических и экспериментальных исследований в области прикладной теории колебаний механических систем, расйматриваются вопросы колебаний и устойчивости элементов силовых гидравлических систем управления и пути уменьшения уровня этих колебаний. Отдельные данные по анализу нелинейных ко-лёбанийДполучены путем моделирования на аналоговых электронно-вычислительных машинах. Рассмотрены современные проблемы исследований в области изучения влияния вибраций на человека-оператора. Материал сборника будет полезен для научных сотрудников и инженеров, работающих в области прикладной теории колебаний и вибрационной техники.  [c.2]

Бесконечномерные группы Ли являются обобщением ГЛ. Элементы таких Г. характеризуются заданием бесконечного набора числовых параметров (или нек-рого количества ф-ций). В физике используют в осн. Г. линейных операторов в бесконечномерных линейных пространствах, Г. диффеоморфизмов гладких многообразий и Г. калибровочных преобразований. Теория таких Г. разработана в гораздо меньшей степени, чем теория обычных (конечномерных) ГЛ. Большинство результатов здесь носит отрицат. характер эти Г. не являются локально компактными, на них не существует инвариантного интеграла, они могут не иметь полпой системы унитарных представлений.  [c.542]

Нахождение динамич. группы симметрии физ. задачи, с одной стороны, эквивалеитно решению Шрёдин-гера уравнения (или Дирака уравнения, Клейна — Гордона уравнения) для данной системы, с др. стороны — позволяет использовать хорошо развитый матем. аппарат теории представлений групп Ли и получать соот- [Ошения типа рекуррентных соотношений для матричных элементов операторов физ. величин, что важно при расчётах физ. эффектов по теории возмущепий (папр., при расчёте Штарка эффекта для атома водорода).  [c.625]

Для сравнения с опытом теория должна решить задачу о рассеяиип частиц, в постановке к-рой принимается, чтоасимнтотически, при t-i—oo(-j-oo) система пребывала в стационарном состоянии (придёт в стационарное состояние) Ф (Ф-м), причём Ф ж, таковы, что частицы в Еих не взаимодействуют из-за больших взаимных расстояний (см. также Адиабатическая гипотеза), так что всё взаимное влияние частиц происходит только при конечных временах вблизи г=0 и преобразует Ф в Ф = 5Ф . Оператор S шг. матрицей рассеяния (или iS-матрицей) через квадраты его матричных элементов  [c.303]

Однако теория возмущений не всегда применима. В таких случаях пользуются др. методами, в к-рых центр, роль играют рассмотрение М. р. в целом и изучение общих свойств её матричных элементов, прямо описывающих амплитуды процессов рассеяния и рождения. Гейзенберговы локальные операторы могут быть тогда выражены через расширенную за поверхность энергии М. р. и играют важную роль, поскольку через них накладывается центральное в 5-матричном подходе условие причинности Боголюбова. Это условие приводит к обращению в нуль матричных элементов М. р. в определ. пространственно-временных областях. С др. стороны, условие унитарности в комбинации с положительностью масс всех состояний полной системы (условием спектральности) приводит к обращению в нуль фурье-образов тех же матричных элементов в определ. импульсных областях. Из этих двух свойств можно вывести, что для каждого заданного числа и сорта частиц амплитуды всех возможных реакций суть граничные значения одной аналитической функции многих комплексных переменных, фактически зависящей лишь от их лоренц-инвариантных комбинаций. Из этих свойств голоморфности можно вывести ряд непосредственно связывающих опытные факты физ. следствий. Так, в простых случаях двухчастичного рассеяния, напр. для рассеяния пионов на нуклонах, выписываются дисперсионные соотношения, выражающие вещественную часть амплитуды рассеяния через интеграл от её мнимой части (см. Дисперсионных соотношений метод). На этом пути приходят и к др. важным модельно независимым результатам, не опирающимся на конкретную форму взаимодействия, таким, как перекрёстная симметрия, правила сумм, асимптотические теоремы, результаты относительно асимптотич. автоиодельно-  [c.72]

РЕДУКЦИОННЫЕ ФОРМУЛЫ — правила вычисления элементов матрицы рассеяния (S) в аксиоматической квантовой теории поля (АКТП). Конкретный вид Р. ф. зависит от выбора исходных объектов в конкретном варианте теории. Наиб, прост этот вид для АКТП в формулировке Боголюбова, где исходным объектом является сама 5-матрица, понимаемая как оператор в Фока представлении  [c.307]

В релятивистской квантовой теории, рассматривающей процессы, в к-рых могут происходить взаимопревращения частиц, С. п. должен быть дополнен т. н. суперотбора правилами. Напр., суперпозиции состояний с разными значениями электрического, барионного, лептонного зарядов физически не реализуемы, их существование означало бы, что при измерении, напр., электрич. заряда квантовой системы можно с определ, вероятностью получить разные его значения, что противоречит опыту. Поэтому операторы физ. величин не должны менять заряды. Это накладывает на матричные элементы операторов определ. ограничения, к-рые и наз. правилами суперотбора.  [c.26]

В то же время, если магн. поле в установке Штерна — Херлаха было бы ориентировано вдаль оси х, то установленному с помощью приведённого рассуждения значению проекции Sij тоже отвечал бы элемент физ. реальности. Однако наблюдаемые и S . несовместны, т.е, не могут быть измерены одновременно, т. к. соответствующие операторы не коммутируют [5,, 5 ] = /5у7 0. Отсюда, согласно условию 1, делается вывод о неполноте квантовой механики, т.к. паре элементов физ. реальности нет соответствия в теории.  [c.498]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Задача механической теории ползучести состоит в установлении определяющих уравнений, связывающих механические параметры состояния — напряжения и деформации. Эти соотношения должны содержать некоторые вре.менные операторы дифференциальные или интегральные.. Процесс ползучести часто заканчивается разрушением тела, поэтому в идеале механическая теория ползучести должна содержать в себе элементы, позволяющ Ие предсказывать момент разрушения.  [c.247]

Название метод граничных элементов , впрямую привязанное к дискретизации границы для проведения вычислений, вряд ли могло появиться до тех пор, пока численное решение сложных задач на ЭВМ не стало общедоступным — интегральные уравнения родились и долгое время оставались не средством численного решения задач, а мощным орудием теоретического исследования проблем математической физики. С их помощью доказывались теоремы существования и единственности решения краевых задач в различных классах функций, выяснялся характер сингулярностей в особых точках, изучались спектры операторов, соотношения между исходными и сопряженными уравнениями и т. д. Эта большая работа оставила заметный след в развитии математики. Достаточно назвать имена Э. Бетти, В. Вольтерры, Д. Гильберта, Ж- Лиувилля, Дж. Лауричеллы, А. М. Ляпунова, К. Неймана, А. Пуанкаре, С. Сомильяны, Э. Фредгольма, чтобы почувствовать сколь значительны результаты, полученные в теории интегральных уравнений.  [c.266]


Смотреть страницы где упоминается термин Элементы теории операторов : [c.40]    [c.252]    [c.80]    [c.312]    [c.352]    [c.7]    [c.35]    [c.237]    [c.305]    [c.421]    [c.474]    [c.356]    [c.74]    [c.388]    [c.410]    [c.95]    [c.103]    [c.32]   
Смотреть главы в:

Динамика процессов химической технологии  -> Элементы теории операторов



ПОИСК



Оператор



© 2025 Mash-xxl.info Реклама на сайте