ПОИСК Статьи Чертежи Таблицы Аналитичность. Из спектральной теории операторов известно, что = {Е — Я)“1 является аналитической операторной функцией Е, регулярной всюду в плоскости с правым разрезом, за исключением точек, соответствующих связанным состояниям. Спрашивается, почему же тогда S не регулярна с необходимостью там, где регулярна I/? Это различное поведение и 5 на физическом листе обусловливается тем, что матричные элементы 5 вычисляются для зависящих от энергии волновых функций, которые при комплексных значениях энергии не дгогут быть нормируемыми. Именно это обстоятельство ответственно за возможное отсутствие регулярности функции S там, где функция .V i регулярна, а равно и за возможное появление кратных полюсов у S в точках, в которых функция должна иметь только простые полюсы. Более того, поскольку соответствующий матричный элемент от вычета функции У может обращаться в нуль, то функция S {к) необязательно должна иметь полюсы в точках полюсов для Поэтому исследование д как операторной функции Е намного проще исследования S-матрицы. В случае можно привлечь общий и хорошо разработанный операторный формализм; S-матрицу же удобнее исследовать методами, которые используются в настоящей главе. [Выходные данные]